{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Instability in a multistep method\n", "\n", "Consider the ridiculously simple IVP $u'=u$, $u(0)=1$, whose solution is $e^t$." ] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "using FundamentalsNumericalComputation" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [], "source": [ "dudt = (u,t) -> u;\n", "u_exact = exp;\n", "a = 0.0; b = 1.0;" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Let's apply the LIAF method to this problem for varying fixed step sizes. We'll measure the error at the time $t=1$." ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [ { "data": { "text/html": [ "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "
nherror
Int64Float64Float64
50.20.01604519922158687
100.12.845479238377764
200.051.6224961462218664e6
400.0259.3442027524627e18
600.0166666666666666661.740134731635269e32
\n", "\n", "\n" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "n = [5,10,20,40,60]\n", "err = zeros(size(n))\n", "t = []; u = [];\n", "for (j,n) = enumerate(n)\n", " h = (b-a)/n\n", " t = [ a + i*h for i=0:n ]\n", " u = [1; u_exact(h); zeros(n-1)];\n", " f = [dudt(u[1],t[1]); zeros(n)];\n", " for i = 2:n\n", " f[i] = dudt(u[i],t[i])\n", " u[i+1] = -4*u[i] + 5*u[i-1] + h*(4*f[i]+2*f[i-1])\n", " end\n", " err[j] = abs(u_exact(b) - u[end])\n", "end\n", "\n", "pretty_table( (n=n,h=(b-a)./n,error=err), backend=:html )" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The error starts out promisingly, but things explode from there. A graph of the last numerical attempt yields a clue." ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlgAAAGQCAIAAAD9V4nPAAAABmJLR0QA/wD/AP+gvaeTAAAgAElEQVR4nOzdZ1wT6RYG8DeUAKFXCyp2bCgIUkWxd8WCvSMgdl1d+7prd+1dsGCv2EWxF1QEpYoogiiIgvQeUud+iBchlkUNMwk8/9/9wByGyXHu4uMk551hURRFAAAAqislphsAAABgEoIQoJpatGiRu7v77xwhPT3d3d19y5YtsmoJgBEIQoCfwOFw2Gx2fn7+93ZYuHAhm81esWKFVL1z584sFsvIyIjH4339U1u3bmV/R1BQkIz/DP93+vTpAwcOVPDDkbNnz/r6+vL5/LLFvLy8AwcOBAYGVk6DADRRYboBAEXC5/NFItEPwkMoFAoEAqFQWLb49u3b+/fvE0KysrKuXr06cOBAqZ8SiUQCgaBWrVrm5uZS39LR0ZFR779l5cqVkZGRQ4cOZbPZpUUOh+Pi4tKmTRsGGwP4fQhCgErn5+cnFouHDRt26tSpAwcOfB2EEn379vX19aW5t99hamp69+5dprsA+F0IQoDKJRaLDx8+zGazt2/f/uzZs8DAwNTU1Fq1av3+kSmKCg0NjYuLS09PNzAwqFevnpOTk4aGRukOPB7v7t27cXFxLBarefPmLi4uqqqqXx+nsLAwLi7O0NCwfv36ZevJyckZGRl16tRJSUkpLi4mhERGRmpraxNCVFVVW7duzePxYmJidHV1GzduLPkRoVD44MGDFy9eiMXixo0bd+nSRV1dvfSAL168KCkpsbKyEolE169fj4+P19bW7tatm5mZ2e+fDYBfRwFAhSkrKxNCcnNzv7fD3LlzCSF//fVXaeX69euEkIEDB1IU9ffffxNC1q1bJ/VTGzduJIR4eHhUvJPU1FRbW1upX2d1dXU+ny/Z4f79+/Xq1Sv73UaNGoWGhpYeoVGjRoQQsVgs+Rhy3LhxUi/h5eVFCPHx8fn6741atWpRFPX69WtCSI8ePST7R0RESL21a2pqeuvWrdIDNmvWjBASHR0t+UKCzWbv3bu34n9wAJnDsAxA5fLz8yOEjB07lhAybtw4Fou1f/9+6rfX786cOTM0NHTixIlPnz5NTk6OjIw8duxY165dJd99+fJlr169UlJSlixZEhMT8/z58zlz5iQmJnbr1u3du3c/9UK1atW6efOmJDXPnz9/8+bNmzdvnjp1Smq3Dx8+dO3aNS4ubsaMGVFRUbGxsX///XdaWlqfPn2ioqLK7jlgwABzc/OrV68+ffp05cqVFEVNnTr1Z7sCkCWmkxhAkfzsFWFubq6GhoaBgUFJSYmk0qFDB0LI48ePy/6U5IrQyMjIurzVq1d/74WMjY2NjY2/991BgwYRQhYtWlS2OHXqVFLmyq+CV4Q3b96kKMrS0pIQkpOTU3aHsleE3t7ehBB3d/eyO/zzzz+EkJ49e0o2JReCkovjUtOmTSOEbNu27Xt/FoDKhitCgEp09OhRLpc7cuRINTU1SUVyaSi5TJRSUFDwrrzMzMzvHVlPTy8/P//Fixdff4vH4wUEBLDZ7Dlz5pStz58/n8ViXbhwQSwW/9af6lvOnz9PCFmwYEHZ4syZMzkczs2bNwsKCkqL8+bNK7tPt27dCCFv376VeUsAFYQgBKhEZd8XlXBzc+NwOCdOnCgsLJTaeezYsZnlSa4Uv2nixIk8Hs/S0rJXr14bNmyIiIgo/dabN294PJ6ZmZmhoWHZH6lbt66JiUleXl5KSops/nj/l5WVlZaWpqOjUzo1IyGZoxGJRHFxcaVFqc8Ra9SoQQhJS0uTbUsAFYepUYDKEh0dHRYWxuFw7ty5c+fOndK6qalpfHz8uXPnygbkz5o/f36NGjV27NgRGBgoWdLesGHDTZs2DRgwQBKxJiYmX/9UjRo1Pn36VPb6TCZ+/IqEkLKvyOFwyu6gpKRECKFw02NgDoIQoLIcOHCAEFJcXCz1hqGEn5/f7wQhi8WaMGHChAkTPn78eO/evYsXL549e3bQoEEPHz7U09MjhHz69Onrn5JceEkt0pdEkUgkktr562vW75GsqUhPT6/gKwLIFQQhQKXg8/nHjh1jsVj+/v5fx8D48ePv37+fmJjYsGHD33yh2rVrjxw5cuTIkatXr168ePH58+dXrlypoaEhWQVobGxcumdSUlJGRoa+vr6pqWnZI9SsWZN8KzhfvnxZ+rVkAaLUHXNKGRgY1K5d++PHj69fv27atGlpPTs7OyEhQUVFpex6CQB5g88IASrFpUuXMjMz27dvP2jQoK5fGT58OEVRBw8e/LWDi8ViyQr3siSL9Hk8HpvN7t+/P5/Pl/qIcc2aNRRFDR48WHIJWKpu3bqqqqpPnjzJyckpLQYGBoaHh5du1q5dmxDygw8XhwwZQghZu3Zt2eKWLVu4XG6vXr00NTV/9s8IQBtcEQL8tHnz5pW95abE0KFDJUsjJCRjMqNGjfrmEUaNGrVx40Y/P79ly5ZJlmT8lJKSktq1a48aNapr164NGzZUUVF59uzZokWLWCyWm5sbIWTlypUBAQHr16+X3NpNJBIdOnTIx8fHwMBg2bJlUkdTVVUdNGjQqVOn+vTps3DhQm1t7QcPHqxbt65x48YJCQmSfdq1a3fx4kV3d/dhw4bp6elxOJzRo0eXPciiRYtOnjzp5+fHZrMnTJjAZrNPnTq1fv16DQ0NqXQEkDsML98AUCg/CK3t27dT/19HOHv2bGVlZVVV1czMzO8dqmXLloSQGzduUD9/Z5mSkpKv31PV19f38/Mr3efJkydl36UkhLRs2TIqKqp0h9J1hBRFpaWltW3btnRPNTW1PXv2lF1HWFRUVHYRyDfvLPPixQupG3A3bNgwKCio9BUlb5Byudyyf5bQ0FBCiOQSGYARLArDWgAVlpCQ8L1fGRMTE11d3czMzJycHA6Hw+PxVFVV69at+71DpaenFxYW6uvr6+vr5+bmZmRk6OrqfnPw8nuSk5Ojo6PT0tLYbLaZmZmtrW3ZG40SQoRCYXBwsOReoy1atLC1tS0b5ElJSXw+v0mTJpJNkUh07969hIQEHR2dLl26mJiYZGZm5ufn16pVq+xh09LSiouLlZWVzczMBALBu3fvNDU1JW+cEkLEYvHTp09fvHghEomaNm3q6OhY9u6m79+/FwgEDRo0YLFYpUUej/fhwwctLa2f+rMDyBCCEAAAqjUMywAAQLWGIAQAgGoNQQgAANUaghAAAKo1BCEAAFRrCEIAAKjWEIQAAFCtIQgBAKBaQxACAEC1hiAEAIBqrWoG4du3byu+M24yRxvJ/W2Z7qK6wKmmk1gsZrqFakTmZ7sKBqFQKCy9j3BFdi4pKanUfqAUn88XCARMd1FdcLlc/O1Mm6KiIqZbqEZkfrarYBACAABUHIIQAACqNQQhAABUawhCAABQGHw+/969e7L9mBBBCAAACiAlJWXW/CX1WrUbu/ViAyvHcZNnxMXFyeTIKjI5CgAAQKXq1G/I23ZTRHMeExU2ocRHYq5d7zM46UWYmprabx4ZV4QAACDvHj9+nKPbSGQ7gqiwCSGEpURZ9CmyGHDqjP/vHxxBCAAA8m711j1Z9h5SxUKHSet27P39gyMIAQBA3uXlFxA1bekqW53L5f7+wRGEAAAg75bO9tZ97CNVVH98YPbkib9/cAQhAADIl4KCgq07dzt27+93+AiPxyOECJp1LYx/ShIef9npwwut8JMTxoz6/ZdjVb078wqFQnV1daFQWMGdBQKBhoZGZXcFhBAej8disdhsNtONVAvFxcXq6upKSvjHLh0KCgq0tb964w5+yZzFy46euVjYdji3RS+tSH9OzEWbQV7RbbxW13h+YvfGsNj43OZ9NeNvN6mhs3bRnE4uLr//ighCBCF9EIR0QhDSCUEoK0lJSTb9x2ZOu0FY//9PVyRQXeMYG/qwsYkWISQjI+PUqdP9+vU1MzOT1YvilwQAAOTFxh0+OQ5eX1KQEKKsqmw3LMD/qGTL2Nh43LixMkxBgiAEAAD5cerseZHlAKliSbtRe/yOVd6LIggBAEBe2NrakndPpYrKr+/17Nqp8l4UQQgAAIwRiUTJycmlm3/O8FYLkl4mYRCyb9Zk98rrAUEIAAAM+PTp05Llq+u2aGvdb4ylc9fTZ/yT8gTzMm04xen6p7xJciQhhMQ/NDw8xq5Zfdl+KCgFU6OYGqUPpkbphKlROmFq9GcVFBQ0srDJ7TRH0G44YXNIRiLn/g5xcf7f2/3mtWbdvXNn+aZdz59HOzk5LZnlbWdnJ/Wzsj3bCEIEIX0QhHRCENIJQfizNm/fufhxIbfLnLJFnX8d4h9eNTExkWyKRCJlZeWvf1bmZxu/JAAAQLdtew9x7cZJFbkO43ftO1i6+c0UrAyKEYSPHj3q37+/ra3tuHHj3r9/TwiJiYkZOHBgv379Hj58yHR3AADwE0pKSgqLi4mmvlRdYNz0+cvX9PejGEFYt27dXbt2BQcH29vbe3t7C4XCwYMHL1++fOfOnePHj8/Ly2O6QQAAqCh1dfWenV1YL65L1Y1C98+f7kl/P4oRhPXq1atTp46ysnKzZs0oigoJCWnUqJGFhUW9evU6d+58/br02QQAAPlRUlKy78DBWfOXvH37VlJpM8iLdXMb4RV92eljrF7he1tbW/rbU6H/JX+Nv7//8uXLs7Kybt68GRMTU7t2bUm9Tp06KSkpzPYGAADfJBKJpvyx4ELA9aI2A7mGzY4Pcm9gyLHwWHOP1XzGiD7+O1yKGzrn1LEzCDtqqiHatWMTI00qTBAOGTJk0KBB/v7+Hh4e8+fPFwgEkjqPxzM2Nma2NwAA+KaAq1dPRmfmzwshSiqEkIx2wzJeP4jbvDT+3gVj9dkbF80MCLh6+9ET72Nbzc3NmWqS+bdGCwsLHzx4sH379jNnzpQWi4qKNm7cOGXKlCNHjpQu8FBSUnJ1dY2LizM3N4+NjZUUY2NjGTx9AADwAys2787vPFeSgp817cDmZhd/SiKEKCkp9evXd8valcz+Nc78FeG///57/vx5ZWVlU1NTNzc3SbFPnz7a2tqurq7r169/9eqVqampWCzW1dX19/cfOXKkubl57dq1ly5dqq+vn5aW5iKL51EBAIBsvX//PimriNRsKlXPthm358DhNf8sZaSrrzEfhMuXL1++fPmmTZtu374tqTx+/DgmJubDhw9qamq2trbt27d//PjxkydPsrOzZ8+eLYm906dPnzt3js/nX79+/ZtLhh88eFB208jIqEWLFpX/pwEAgM9q1KihxM0hQj5RKXcbDc30WOveTkx19TXmg/BrDx8+7NChg5qaGiHEwsJCXV09JyfH3b3cHVfV1NRGjBjxvSNQFLVw4cKyFScnp6VLv/GvD8mdZSp4Gxr4TbizDJ24XK5AIMCdZehRWFjIdAvygqIosVhcuha+T8/ufpEXKRu3L3sIuOovAzt3WlxQUPBrL/FTZ5vD4fznwnx5DMLU1NSy8y8mJiapqak/dQQWi/Xo0aOK7IlbrNGJzWYjCGmjrKyMW6zRCbdYy8nJ2bP/4G6/owKBYMzQwbOmeBRr1XrYfDJ7VV+RSCC0HkxU1Mi7ML27GyeMHG5gYPA7ryXbsy2PQchms/Pz80s3BQIB/uoEAJBnUVFRXQeNLHD04E2+TlTUNoed2dOxn1L/pcsn9h/U79amXb4nNjkJVdQtGpv9tWpqx44dme63HHkMwtq1a0dGRkq+FolEqamppqamzLYEAAA/sHLTjizXTVTzzpJNof2YgkZOjS9Nm7HRlZA6m1YvX/fP0tzcXPlc7SaPb5tI7iD68eNHQsi1a9f09PSsrKyYbgoAAL4tNzf3XvBTqln5h8gbN8wVKr948UKypaqqKp8pSOThivDatWtLly799OlTQUGBjY1Nv379li1bNnnyZCcnJ0dHxxs3buzYsYO2e5ADAMDPioiIENe1IiyWVL3QzDH4SUjLli0Z6arimH8eYXZ2dund5wghhoaG9evXJ4REREQkJiba2Nj87IOJ8TxCuYWpUTrheYR0qubPIxSLxXVbWn+cdpeoaX6pUpTxBru4J3f09aWfMvGbZH62mb8iNDAw+Ob4kJWVFd4RBQCQQwKB4Nz5C1pamr169lRSUlJSUrLq4ZYafJRy8fqyU+xNZzsbmadgZWA+CAEAQFHk5eUtX7fxxNmLRc16sHiFmnMWTxwz4oP91DiLCRaHJ6buvpBl5ylW0zIK2Wsiyl592JfpfisEQQgAABW1ZtO2bbGUcPYjoqJGCMnjFa4+M79V9slna9x13a+9efNm/XafnLz8Rbv/btOmDdPNVhTznxHKHD4jlFv4jJBO+IyQTtXkM0KhUFi3Rdu0WUGEzflSzUtrdMQtIfIJbW3I/GzjlwQAACrk8uUrxU27lEtBQohuzTztes+ePWOoKRlAEAIAQIUYGOircrO/rrO4uXp6evT3IysIQgAAqJCOHTtqpr8khVnlqulvzHRUGjduzFBTMoAgBACAbygsLNyx26dRG7vO/YfevXuXoqjobKrIdozqmbkk893nnT6+1D07e/EMrx8dSO5hWAbDMvTBsAydMCxDp6o3LHPm3IWpC5YVWg3j2o8n2e8NHu9hf4wWzQlc115HI/ri6m17UoUaLD63oZHm0tnektWEtPUm87ONIEQQ0gdBSCcEIZ2qXhA2aeuYMPIk0atVWmHd2ja1pfL2pbMkm7GxsRoaGg0aNKC/N0yNAgBA5QoNDc3RrFs2BQkhlOPYC8cPlV47tWjRgpEUrAwIQgAAKOf0hStZzfpIVzl6JVo14uPjmeiociEIAQCgnDHDBhvFXpSuFudocjObNGnCREeVC0EIAFDdicXiO3fuZGZmSjZbt2nDyv9Ecj+W3Uf9yaGZXhNYXz1rqQrAvUYBAKqvzMzMbXv27T96klvHWuXDfLs2LebPmupbYq09YJ7Yp19Ja9cih0kk861hsI9hfqL7nhtM91spMDWKqVH6YGqUTpgapZPiTo127DMoWL+DwGH850cJJjxSOT69/5bAo/1NWcKSYydPrd+xt2HDBktnT3FwcGC62c+wfOK/IQjlFoKQTghCOiloEKakpLTtMzJj+u2yRaXHB/+s+2nNP0uY6uo/YfkEAADIxqZdvtm27lJFcbthh076V/BaompAEAIAVFP5BUViNS3pqpKKmBKLRCImOmIGghAAoJpaOGuKQbD0Q+SVIy64DeirpqbGSEuMQBACAFQLJSUlfoeP2Hftu3Hrjvz8fEJIunbDfAEhERcJJf68U8Zb3ftb/pjqyWSjtEMQAgBUfRu27zZrbTv9YnxIh9VLQkoat+vY3Wux603hjp07RwvumWyw07y2wsh3gEXAlL1rFtevX5/pfmmFqVFMjdIHU6N0wtQoneR8arSoqKiBlWPGH8FEWfVziaKUN/e8enxvd8tGhJDCwsKzZ8/Z2dk2a9aMyUYrBlOjAADwc/wOHy2yGvYlBQkhLBbl4nXu0OcPCLW0tMaNG6sQKVgZEIQAAFXcnkMniq1HSBXFbfqdO3+BkX7kDYIQAKCK693VRSX+nnT17dN2dnYMdCN/EIQAAFUNRVGJiYmlm7Omeqk9OiC1j+ET3yWzvOntS04hCAEAqo7c3Nx/N201a2VjN8SjSVvHPXv3f8or9o4xUa/dyMBvBHl1j1AUSY4wODW5nihNfm4fyixMjWJqlD6YGqUTpkbpJCdTo2KxuEHLtp/ajuXZjSEcPZL/SSP4ABV7Z6zP7R2OylHhz1Zt2X3/wYPWrdssne3duXNnBX2mkszPNh7DBABQRVwLDCyo78TrNP3ztk4Nbo+F2knPJmtGqypZ2djYnD+6XywW459HUnA6AACqiBWbd+fYe0gVC5y81u3YW7qJFPwazggAQBXxISWFGNSVrtZo+ioujol2FAaCEACgivCeMJodelSqqP147/zpXoz0oygQhAAACkkgEJw+4+8544/o6GhJxaLfeGHQIVKY+WWn3I+ar64PGTSQmRYVBIZlAAAUz5IVa/cfOVHcrFtBXYfzXn+ZULk9p/59XMnpz3l/nPEdkG/ULKNxD/3n5wz56Rs2r1VVVf3vI1ZjWD6B5RP0wfIJOmH5BJ1oXj7x/Plzl/Fzsyf5E1X1z6X0N+wDY+MiQuprswghQUFBZ68Ejhs+xMrKirauaIPlEwAA1d2qzbtyOsz8koKEEJNGmnXMP0Q/ru/kRAhxdnZ2dnZmrD9Fg38tAgAokpKSklv3H1AtukjVc2zH/7tzHyMtKToEIQCAIlFXV9fX1SUFGVJ1tdQYOysLRlpSdAhCAAAFwOfzS7+e6TlB9fFBqR10wo5Odh9PY0dVB4IQAEB+FRUV7dzj28jS3rSZ1YQps+Li4jJLyGnjoUrBR9j3dxFuPiGEpL7SPTWlg00bAwMDpvtVSBiWAQCQU+np6RZ2HQptxxSPO0c0DQ49v3Z+6GSltq6eU6adf/7E98DBXbu7lbDUGtY0WDpnSu9evZjuV1Fh+QSWT9AHyyfohOUTdKqk5ROL/1m1PslY4DjhS4lXqL+5Y0ZchLKyMiGEoqj09PQaNWrI/KXlmczPNn5JAADkkUgkOnjCX2A9tFxVTUvcxDkw8Lpki8ViVbcUrAwIQgAAeZSSksJX1yNqmlL1/HoOt4IeM9JSVYUgBACQR2ZmZrU0WSTznVTdKPzo5AljmOioykIQAgDIBbFYfCUg4Mix4zweT1LpOdKLdXdXuZ1SX5lqiM3NzRnor+rC1CgAAMN4PN7ajVv2HTlR3MCJr6b3x99rh/TvYzzgj5N6/R3ULsZvds61nSAwbmIYul8nJ2H7rs1M91vVYGoUU6P0wdQonTA1SqffnGP0O3xk2sH7xYPXEzUtQggR8lk3NtVSLQk/uKqGBklPT9/usz/65ev50zwcHR1l1rTCkvnUKIIQQUgfBCGdEIR0+s2/ms1t2r8efozo1f5SEvJrbHJMjnmK35evYfkEAECVEhkZma1mUi4FCSEq7OLmPc+dv8BQU9ULghAAgEn6+vqs4pyv68pFmUZGhvT3Uw0hCAEAmGRmZtbQWJt8iClXLc7VSYvq0rkzQ01VLwhCAAD68Hi8g0eONrft0LZjj7NnzwmFwpQiKtveU/XMPPI++vNOme+0/OdMnTiGxWIx2mx1gWEZDMvQB8MydMKwDJ0qOL4RHBw8cKxXUav+hU4ehM/VCfZlv7yp5H16dpem1hl3lm/aFfcxi6hr11ItWTRj8qCBrqqqqjQ0r3AwNfrfEIRyC0FIJwQhnSr4V3Onfm73LOcSs7ZfSlEB3fLv3ji0VbKVkpJSUFDQvHnzSuqzasDUKACAQkpNTX2RlFYuBQkhrXtFPblfVFQk2apTpw5SkH4IQgAAOly7FljQtKt0laXEr2//8OFDJjqCzxCEAAB06N+/n/bLq9JVsVDtbXDHjh2Z6Ag+QxACAFQKiqIePHiQlJQk2TQyMqpl1oi8eVJ2H6XIy/17dVdXV2eiQfgMN90GAJCxgoICn/0Ht+89WFizlXJ2cmNj7UWzpzw06pbbcZbxvkn8pp3yHDyJgKv/eI9OasTCy/5M91vdIQgBAGRs1sJlx5LVeF6BhKNHCMn48GLgrGm20/SiZttrz424fPnKyq1zNTmcpfO9u3TZi8WCjMPyCSyfoA+WT9AJyyfoVHagn8vl1m9jnz43hCgpf9kj7n6/D8cvHT/ATH9VC5ZPAADItSPHThRZDi6XgoQQ845PIqKzs7MZagp+BEEIACBLRVyuSOVbbzIpqwoEAtrbgf+GIAQAkKVJ48dqhR0nlLhcNTHEqmmDGjVqMNQU/AiCEADg1wmFwjP+Z7sMGLZg2YrU1FRCSKpYi29my7q9gwh5n3fKTdW9vmrxrMlMNgrfh6lRAIBfdPz02T+WLi9u2jXfZU1E0tMD3QY3aNQoyW3/8uXL317YfnqzU5F5d+WstwYlaQumeXbo0IHpfuHbMDWKqVH6YGqUTpgarWwURdVraZ0y+bpkjYSE0kGPrXPGTBvUhRDC5/MvXrrUqGHDtm3bfv8w8NMwNQoAIBdu3LhRXM+2bAoSQsRdpp312yP5ms1muw0ZghSUfwhCAIBfsfPgiezWQ6WrddtEx74sfZoEKAQEIQDAr3Dt2VnzzT3panZKLRMjTU1NBhqCX4UgBACoqPj4eLH487qIUcOHKUVcIKJySwO1gvcumO7FRGvw6xCEAAD/obi4eLfvvsZWDo4jptZrab1i3YbU9KzJISoadoP1d/dlRVwkYiFJi9M7N8c4PtBt8CCm+4Wfg6lRTI3SB1OjdMLUqAxZO3d9VbNDscNEolODlBSwQ4+Rez6uB8L9XNgf3sav3+5z9uKlho0aL53l3adPb2Vl5f8+IvwGmU+NIggRhPRBENIJQSgrL1++7Dh+bobHhbJFNf95x7xcBg90lWzm5+fr6Ogw0V11hOUTAAC0WrNlV6a9p1SR19F79dY9pZt4lJJCQxACAPzIq4REyriRdFXHJO3jRybaAdlDEAIA/MjC6R66T/ZJFVVDj3uMH81IPyBzChOEubm5ERERmZmZpZWPHz++e/eOuY4AoAoSi8VXr10b6zX9/v37koqZY9/C6DskK+nLToWZuqF+0zwnMtMiyJpi3HT75MmTmzZtsrCwCAkJmTJlypQpU/7555+goCBtbW1jY2NfX1+mGwSAqmCHz/61W3YUmdnnNu0ZsNxPO31uX88/zxi4Ll696eIujzRKK72Vm37CTZ2suL8WzTEyMmK6X5ANxZgaLSoqktypITU11dbW9tmzZ87OzrGxsSoqKo6Ojj4+PhYWFqU7Y2pUbmFqlE6YGv1ZmZmZzZ17ZU69TtT/P5FYlK28sVtIaIh1TQ1CSExMzMHjp117d2/fvr3Uz8p8jhF+oJpOjZberygpKalu3boRERE2NjYqKiqEkPbt24eEhDDaHQBUBTt89+fbTfiSgoQQTQO2jWtU4BnJVqtWrTasXv51CoKiU4wglMjMzJw8efKWLfgdGEgAACAASURBVFtyc3O1tLQkRR0dnZycHGYbA4AqYN+h4/x2I6SKXPsJG3fvZ6QfoI3CBGFOTk6/fv3WrFlja2trZGRUGn5ZWVkmJibM9gYAVUCTpk1J2mupIisl2tqqDSP9AG2YD8Lnz5+PHz/e0tKyY8eOZYvW1tYaGhrNmzd/9OhRXl5ev379FixY0KtXL0KIra1tWFhYfn4+n8+/deuWi4sLY90DgCLj8XilXy+Z7c15JD15ZxTi++c06dX0UMUwH4QlJSWWlpbDhg1LTk4uLY4ePXro0KHFxcULFiwYOnTowYMH3759u2LFChsbm3bt2uno6KxcubJz587Ozs7u7u5mZmYM9g8ACofH4x05drylvUvtZlYDRk4IDQ0tFJBdog7i5ChO4CqSl0oIIVlJ2peXmKkLWrVqxXS/ULnkZWo0MDDQ29v77du3hJCwsLBOnTplZGSoqakRQho0aLB9+/a+fftK/QhFUWKx+Ov72wqFQjU1tYEDB5Yt2tjYzJgx4+vXxdQonTA1SidMjX4Pn8+3sHPObd6v0NGDGNQhr4N0g3awDOoOmvfvqpaF/v7+W30P5pSIa+hqzPOe6Dqgf0X+iy0sLCwdXIDK9lNnuyK/BfK4jjA+Pr5JkyaSFCSEtGzZMj4+/uvdWCzWD+7yPmTIkLKbpqam6urqX+8mFAqVlZW/+S2QORaLhSCkjVgsRhB+0xn/c3kt+xf2/vvzdlPnvCbttdbZb2hTrKurP8XLY4qXR3p6+k8NHwgEAvw1QpufOtsV+RWQxyDMzc0t+3xnHR2d7OzsnzoCi8UaPnx4RfZU+r+faxF+iZKSEovFwtmmB/7b/p61O3wLBvuVK7FYgnbDDxw+9sfMaZJCzZo1f+qYONV0kvnZlsf/5wwNDfPz80s3c3NzjY2NGewHAKoMHo+XnpFJDOtJ1+s73Hr4hJGWgHHyGITNmjWLj48vLi4mhFAUFR0d3axZM6abAoCqQE1NzdnRnsTdl6rrhx2Z7TmOkZaAccwHYXFxcVhYWEJCAo/HCwsLe/XqlYWFRevWrf/555/8/PzNmzerqal16dKF6TYBQFHdv39/l49v6ftMfcZMVrqzg1DiL3sUZmqmPOvWtSsz/QHTmP+M8P37915eXoSQ2rVre3l5tWrV6uDBg8ePH/f29m7SpEnz5s0vXLjwg6EYAIDv2bpj1xafA/kmrYoMmyzb2LGLs4Pl6D+3Zll1t2wYtt6u0HoEt76DfthRzZRnW1b/g4frVlvysnxChnDTbbmF5RN0wvKJoKCgfn/8mzdqH9E0IIQQSkxCT2m/Coy8eqyhNqugoGD/oSPX7z+e5TG2e7duv5mCuOk2nWR+thGECEL6IAjphCDsNnDErRbTSYN2ZYtGWzrE3L5Qo0YN2b4WgpBO1fTpEwAAPyU9PT3q9VupFCSE5NmM3bnX75s/AtUWghAAqiBNTU0i4BKxSKquWpRRuwaWY0E5CEIAqII0NTV7denEigksVxWLtKLPjR0l/awlqOYQhACg8IRC4blz59t27NHU2mnvfj8ul5vFI/FWHiqX/yGvH3zeKS+Vc2Fh366dOBwOo82C3MGwDIZl6INhGTpVn2GZxMRE516uRU265Dl6EjUtzScH2OH+6qO3uvXsOEIpbM3W3cERzymDevoln+ZNmTR65PDK+H3HsAydMDX63xCEcgtBSKfqE4Res+bt47cTty3zwJmPLxvfWhz/4LJkKzs7Ozk52dLSsvJ6QBDSCVOjAABf8Hi8CwHXxW3KP6atdvO8gkLJY90IIQYGBpWagqDoEIQAoMCCg4OF9ayJsqpUPbdpj2uB1xlpCRQOghAAFJiTk5Pq+3AiKJGq6724NKB/P0ZaAoWDIAQABRMaGhoTEyP5WlVV1aF7fxJ+vtweSeGtGpiampoy0BwoIOZvug0AUBE8Hu/QkWPrd+3L0azLEnBrsPIXzpicbD4opLl77V1DShJvZztMJhq6uo99OQl31x7Zy3S/oDAQhACgGLbt8vn7clTxqFNEtyYhJDMrecKmP007Uk/+Hl5v6rP79++v3Lw1Jy9vyczJ/fptxCNroOKwfALLJ+iD5RN0qnrLJ8xatUv2DCAc/S+l7PctL0yKeXyHuaY+w/IJOmH5BABUR3fu3Cms1bpcChJCDOqmizgvXrxgqCmoIhCEAKAASng8sbLa13VKRY3H49HfD1QlCEIAUAC9evbUTHpCuPnlqrmpxsLMtm3bMtQUVBEIQgCQO2Kx+FpgYIfeg9ynzXn9+jUhJJVLWHbDlK6s+JKFhVmal5fOmzqJyUahSsDUKADIl3v3H4yePLOonl2u/eKHWe8uj5xupEFyJ56e4OHNebTXZ3e3onq2hM/VzoidPXniqOHDmO4XFB6mRjE1Sh9MjdJJcadG23bsHtF9C6nRpLTCurrWw6aGzyJPQohYLL5586aGhkaHDh2Y61EapkbphKlRAKjKEhISUrjKZVOQEEJ1mHTr9AHJ10pKSj169JCrFARFhyAEADmy//DxTAs36aqWUT7b4NWrV0x0BFUfghAA5EjfHl0M3ny1QJ5frJr/sUmTJt/6CYDf9aNhmZCQkFu3blX8WEZGRl5eXr/dEgBULwkJCfXq1ZN8eOzk5KSS+QcpSCfaJqU7qISemDByKO6aBpXkR0EYHR29b9++ih+rUaNGCEIAqCA+n3/a/+yabT4ZQrZS/qdhrn1nTfXySTcVukzR2+Na5OQpsBlKCjK1g/dqxVyesY75+6hBVYWpUUyN0gdTo3SS/6nRgaMn3srRLew4nRjUJUK+csR55SsrbDYEnXc1EeelbffZf+DICUNjo4UzJrsNHiTn/9lgapROMj/bFQ3CvLw8sVj8zW/p6+t/s84UBKHcQhDSSc6DMCcnx9yxW8acx4TFKi0q3dv9VyvBsgV/MNjYr0EQ0knmZ7uiC+rNzc0/ffr0zW9VvWtKAKhsO33357UbVzYFCSFi+9H7dnVd+udsuc1vqJIqGoTr16/ncrmlm3l5effv3w8KClq6dGnlNAYAVVlcYpJAv5t0VU2rRCDkcrmamppMNAXV1G99Rrh48eLIyMiAgAAZNvT78Nao3MJbo3SS87dGY2NjO7ovzHT3L1eNuT6s4OrJ/bsYaurX4a1ROsnXnWU8PDyuXr2alJQkq24AoKp68ODBKI+p589fEIlEhBC1Os0L8nLJ26df9uDmGzzYumjmZMZahOrqt266zefzCSF5eXkyagYAqqDTZy/8+feqApMW2RZuAftucRYs6z1q0qWGk72WbYo6tOJVQE5m29FaKc803z+d4TmhdevWTPcL1c4vTo2KRKI3b97Mnz//2bNnWVlZamrfeGAmU/DWqNzCW6N0kpO3RgUCQd0W1p+m3iBahp9L/GKlTT1PnjnjZlWHEJKcnOxz4LCzQ7vu3box3u0vw1ujdJKvqVE9PT1fX1+5SkEAkCtnzp4rbtn7SwoSQtgclovnE/+9blb/EELq1au36u8ljPUHUPErwiNHjpSdGlVWVjY1NbW3t9fT06u03n4RrgjlFq4I6SQnV4TWLj3Du28mJo3LVQUlNTbapyW8YKgp2cMVIZ1ovSJMS0tLTk6WfG1ubv71DpInR5fS0NCwsLCQYXMAoOjs2raJfB8llgrCjLcNGjZiqCMAaT8KwqNHj86bN6/ixzI3N8dzUgCAy+WWvssyf+aUo/3dC6wHl91B9/HupbO9mWgN4Bt+FISTJk0aMGBAxY+Ft7wAqjORSHTp0uWVW/e8S37fvGmTpXOmdOrcddPHOkJVjtb5eYVOXsSkMclL03xyQP99SM8eO5nuF+Az3HQbnxHSB58R0on+zwgt7Du8N2yb5+hJajQhKc91H/uQ3FTnlecOObPuB15euXVPUlqmgabaXG/3MaNGVLFfOnxGSCfGbrqtQBCEcgtBSCeag/DRo0cDluzJGnWgbJGzo2/Yqe3NzJtKNrOysgwNDb/10woPQUgn+bqzDACAxMotu7PsPaWK3PaeG3b4lG5W1RQERYcgBAAZiIqMJHWlbwpDNWgX9PgJI/0AVByCEABkYPyo4SrPTksVNUIOz/Acz0Q7AD8BQQgAv+Lp06cbNm8tveFUt+HuVNABIuR/2UPA1Yo8M27UCGb6A6iw37rpNgBUQ4ePHV+9aWeupmlWXYe1+1xbN6k/aMqCFRktBgx2e7TJobhl34JmPXWfn+fE31k8b5aWlhbT/QL8B0yNYmqUPpgapVMlTY2+e/fOus+I7ImniG6tz6WER6rnlzx6GNTOmMXn80/7nz12PsBz5JD+/fspKyvL9tXlFqZG6cTYTbcBAAgh67fvyesw40sKEkIaO2kb1VBKDifG1mw2e/TIEaNH4u1QUCT4jBAAKorP5/tfvCKylL7hVLa9x7rtvoy0BPD7EIQAUFGqqqrq6uqEVyRVVy5IN61Vg5GWAH4fghAAKorFYk2dOEYl+LBU3eDJ3j+mSq+mB1AUCEIA+DaKoq7fuOHca2Dd5lar12/KyckpEZHwpqNJ0D5W1GUiFhFCSFG2+o1/W9Q1rlOnDtP9AvwiBCEAfEN+fn7DVtYjNvg/tFuaMuXW8mjlxnZdms89rKKlF3bz4gTqofF6W6ODI8329V3trHfpxEGm+wX4dVg+geUT9MHyCTr95vKJTdt2LAnhcjvNKnPEXP2dvbJePWWxWJLjv3z50traWibdKjosn6ATbroNAHTYvu8w13ZsuRJHj1Wn1YMHDz5vcThIQagaEIQAIC0pKalQSZNoGkjVs5v2On3xKiMtAVQeBCEASDMzM9NT4pHcVKm6UczZCSPdGGkJoPIgCAGAEEJevHgRFBRUujlk3CTWo3JP2SV5qfrFH2xsbOjuDKCS4RZrANWaWCw+ffrMuu0+qWJNoYa+duYfs7wmaHcYs19niNn7/oX7I7PsPama5tpP9nNeXFm3YTXT/QLIHqZGMTVKH0yN0qmCU6MXL14au3p//qCNxNCMEEIKs5QDVuka1QjavbiFHis6OnrVll2xL1/9Oc1zmNsQ/H/3PZgapZPMzzaCEEFIHwQhnSoYhDadeoV12UBqNv1S4hfX3NoxJTas+jw74vchCOmE5RMAIDNv3rxJzheWS0FCCJvDbdwhIADToVBdIAgBqi+hUEiUvzEoQCmp8gUC+vsBYASCEKD6Mjc3r60mIJ/iy1UFXI1XNwb078dQUwB0QxACVCMPHz7sOXjUwNHuz549I4QUCAi7k5fypWUk/9PnPUoK2AErxw13U1VVZbJRABph+QRAtRAbG9t3+Ph8Q/MsB28iKHk4a5120Qdlr6MuXfqPq5O/Zc/QHK16Io6+ZtITz3EjZ0+dzHS/APTB1CimRumDqVE6SU2Nuo3zOGs0mGre5cseT093Fj2/vW+tZCskJCQnJ6d79+6/fJ/u6gxTo3TC1CgA/LTc3Nz7IeFUs87lqm0Hvgi6VlJSItmys7Pr2bMnUhCqIfxHD1D1Xbp8ubBFH8Jilasqq/IaON25c4ehpgDkBYIQoOrr2qWLVuJ96SpFqb4NdnBwYKIjADmCIASompKSkgoKCiRf165du5aRAUmOKLfHqzsdHWz19fUZaA5AnmBqFKBKEYlEV64ErNy65102l1Wc092l/cKZ3o+Um6fYT9M9NolnN6bEfhwR8jnBfloRp5acPcZ0vwDMQxACVCkLl63cE/SmoNt6UrMpocTHX9zw7zOi/uyjYfM7G/z5cK/f4W2+vVVVVf/wdh93KJTD4TDdLwDzsHwCyyfog+UTlU0oFNZraZM6K4ioqn+pPr82rOjGyX07mOur6sPyCTph+QQAfNe58xeKzbuWS0FCSKued4Me5efnM9QUgLxDEAJUHQnvkrm69aSrLBbF0c/OzmaiIwAFgCAEqDq8Jo7TDj1IpD7vSIurb6BRv359ZnoCkHsIQgAFFhYWNsZr+n6/Q5IbxFCahizTViTs7Jc9BCXaN/9dMhP3DgX4LgzLYFiGPhiWkaG79x5MnrsoW71mZtsxmh/DNaPOd+7VN8RpeQ/1d++Prwh9HptnPYadk6T5+ua4YUNW/70Yj5uvVBiWoZPMzzaCEEFIHwShDDVp65jg5keMG37eFguVfEauXDxv4SBHQkhmZuYu3/3NmzYe6DpARQWrpCodgpBOMj/bivEbwuVyAwMDo6KiunTp4uzsTAhJT0/ftm0bj8ebMmVKgwYNmG4QgFYhISG52mZfUpAQoqQi7jbz0WkfMsiREGJkZDR31vSyT58AgO9RjF+S9PT0R48ehYeHP336VFLp27evhYVFt27d+vTpw+PxmG0PgGabfPwyrcdKVxs7PQmLKCwsZKIjAAWmGEFoZma2YcMGa2tryWZ4eDiHwxk2bFj37t3btm1748YNZtsDoFl7G0vOx0jpamGWlhpbU1OTiY4AFJhiBKGUt2/fNmrUSPJ1o0aNEhMTme0HgAbFxcWlX08YO1rl6QkiFpXdQePJwdne7iypZy0BwH9RyCBksb7M+FAUhd98qMIoirp161bHPoPrWti2dup84tRpvkCw8w1H1LST9hF3khROCCHFOep3tmqHHJw4djTT/QIoHrkYlhEKhTExMZmZmY6OjqV3AX737t2NGzd0dXX79+8vNdXZoEGD0qvAxMTEdu3a0d0xAF16DhrxtEAzx2khGdgmOyvJ65iv59L1bTY8jj+75VXIvRWbN0afTtBUVZo+aZzH7hAMLgL8AuaDMDs729TU1MTEJDk5+dWrV+bm5oSQ4ODg3r17jxw5MiEh4d9//33w4EFwcHBiYiKHw7l161bXrl2Li4tPnjypp6cXHh5+4MABpv8QAJXi/fv3EYmpOdNvfd42NCvov4pdOHWh2t1anO61OnXq1KlTbm6urq4u3hcB+GXMvzWqo6OTnJz87t27ssXly5cvWLBg586dV69eZbFYp06dunXrVq1atXR1dW/fvk0IuXLlyosXL+7cuXP16tVvrkvLKg+jdKCINu7wybb3kCryO0xeu2V36aaenh5SEOB3yMuCeoqilJSUJFeEkhXxMTExzZo1I4QsX748Njb25MmTFTyUUChUU1PT1dUtW+zZs6evr+83d8aCetpgQf3Pat/TNar3DmLSqFxVyDdaZ/32+bMf/2xxcTHWEdKmsLBQS0uL6S6qi5862xwO5z9/C5h/a/Rrnz59EolEtWvXlmzWrl371q1bP/4RKSwWq4L32kcQ0klVVRVB+FP+8J449eyRgt5/ly0qR5wfOXTIf/5FoKSkhCCkDUVRCELayPxsy+MviVgsJoSUvtujpKQkqQBUebGxsavXrU9ISJBsOvUaVBJ2mXDLPEpQyNd/4jtnivT7pQDwy+TxirBmzZpKSkqfPn2SjMClpaWVXh0CVFVXr15bvHpDqlAjo0nPjae86+koT5ixYF1Je9fJCx/v6lpk5pBrOVTr9S3NmEseY0eZmZkx3S9A1SGPnxESQlxcXAYPHjx9+nSKopydnceMGePl5VXBQ+Gm23ILnxF+T2FhYcO2ThkT/YlR/c+ltNdKviOuBoX1MFMVi8WB16/vOnhiaL8ew9yGqKmpVeSY+IyQTrjpNp2q5k23586dW1BQQAj566+/9PT0Nm/evGTJEjc3t6ysrNevX6enp48aNYrpHgEqkd/ho0Vth39JQUJIzaYabbrnhV4kZkOUlJR69+rVu1cvxvoDqNLk4orw0qVLZW+c7erqqqqqGhUVdfnyZQMDgxEjRujr61f8aLgilFu4IvyeRm3sEidcIFpG5aoZiW2uTo0M+rlJsVK4IqQTrgjpVDWvCPv37/91sU2bNm3atKG/GQD6GRoZJeanSwdh7sc6pqYMdQRQjeBfiwDMWzrbm/N4r1TR6InvklnejPQDUK0gCAHo9ujRo55DRtVo2Hz2gqXv378XislD4x78lw9UnhwmAi4hhPAK2UG++vlv7e3tmW4WoOqTi7dGAaoJsVhs6djpo3rdLIfJpKvV9vBzR3qP0LLq0XzkwucPrh/cv+/QFmeBcRP1rDceY0dM3XiF6X4BqgW5GJaRLQzLyC0My1wJCBiz81ruoM1fSmKRxhq7TzHB2pocQohQKIyKirKysvr9IRcMy9AJwzJ0kvnZxi8JAH1WbN6dazepXElJmWUz6PiJz7fSVVFRsba2RnoB0Am/bwA04fP58fEJxLSlVL24Wc+TF68x0hIAEAQhAG3YbLZ1Wyvy9qlUXSfqrNeYoYy0BAAEQQhQqRITE69duyYSiSSbEzwnK9/fU24PQQnn1fXBA10ZaA4ACCGYGgWoJFcCAlZs2pWUy+MZN9GYtXDiqKEWrp5zsh2bae5K39k9285D1NiJE3pEM/LMwjnTVVVVme4XoPrC1CimRulTfaZGo6OjXUZ65wz3ITXNCSGEV6R0f49aRvydU/vsTVjv3r3bsMPnzoNH09zHjBs9UlNTszJ6wNQonTA1SieZn20EIYKQPtUnCIdNnHxGbwDVomvZouFGx9ePrhsYGNDTA4KQTghCOmH5BIC8y8/Pv/sohGreRapeaD1y78EjjLQEAD+AIASQMYqiCIv1jW+wlEqnZgBAfiAIAWRMV1fXxd6G9eqOdD3s6GT38Qw0BAA/hCAE+F3h4eFDxnp07DP41q1bFEXxRITv7KUUsJqkv/m8h6BE+fY2BysL2j4gBICKw7AMhmXoU/WGZT59+tS535B0VZNMe0+iZagf7KPx/pmBp0/LNtb9sy+t37brA1eFZ9KUE39v9NCBf86camxsTFtvGJahE4Zl6ISp0f+GIJRbVS8IF/+zav07I4HTxC+lt08bBG95c+e05EPCuLi4V69e9enTR0WF7jW7CEI6IQjphKlRAHkhEon8jp8RtBtertqgXWH6+9SPHyVb5ubmAwYMoD8FAaDiEIQAvyg4OJhn2pqwOVL13FYDz56/wEhLAPALEIQAv8ja2lo5OZyIBFJ1vYRbPbp1/eaPAIAcQhAC/IQPHz6kp6dLvtbQ0OjQpQeJCii3R/qbulpKTZs2ZaA5APgl+OgC4L9RFHXnzp0Vm3fHJqcRkbBt80ZLZ095X9PhnrmH3vbBwrSoQodJRE1TLeSIduihVdv/ZbpfAPgJCEKA/3bg0OE/dp7J67WMuFoSQq6/eXLPc4l+35l35w9oOjX81Bn/tdvHFRUWTps0zmPnfT09Pab7BYCfgOUTWD5BH8VdPtHU2il+xHGiV/tLKS3O6vb88LsB3/8hhmH5BJ2wfIJOWD4BQLeIiIgcjmm5FCSE1DRPyefFx8cz1BQAyAyCEOA/vEtK4uuafl0X6ZmmpqbS3w8AyBaCEOA/9OvbV+P1bcIvLlctztX69MLZ2ZmhpgBAZhCEANJevnw5cerstRu35ObmEkJKKBVd+4GsOzuJ+P8PURIJ2Dc2TJ80jvXNxy0BgELB1CjAF8+fPx/tPSuVr5ZpN4kdkbTJrnPbtlYpA7bZD5tqd3nV9Q12RVZuRMDjPL84qG8vL/fxTPcLADKAqVFMjdJH/qdGXfoOud9qGmns9Hmbolj+891cbE4tHEUIKSoqOnzshLq62oihburq6kw2WgGYGqUTpkbpJPOzjStCgM8+fvwY+z6duDp9KbFYVJcZz8+OJwtHEUI0NTW9PScx1h8AVA78axHgM1+/wzmWI6SrBnUyxRqvX79moiMAoAOCEOAzx3ZtdVIjpKtiISvvY7169ZjoCADogCCEaq2wsLD0627duqkkPyPcvLI7KIVfGNy3t/x/IggAvwxBCNVUcHBwn2Fj61s5Nmxjt2O3T2Fh4d44ims3Vnv/SPLyNqEowitSfbhP//ryudM8mW4WACoRpkYxNUof+Zka9Z49/3RIQnaHGaSxIynM1Aj2I48P11kVfKm/Xsm7qFWbd917HMJWZrmPHj7dy93Y2Jjpfn8FpkbphKlROmFqFOB3cbnccwGB2XNDiJIyIYRoGXG7zVOmlCbmnGym500sLc8c8i0sLORwOEgRgOoAv+dQ7Rw6cqzIcsjnFPw/keP4PXv3l75BoqWlhRQEqCbwqw7Vzt0nz4pMraWrWoaFfGFBQQETHQEAkxCEUO3M8ZpgGH5EupoYYmPRUkdHh4mOAIBJCEKo+t69e7dyzb/h4eGSzSaWdty0tyQr6cselFg/aMfiWZOZ6Q8AGIVhGajKgoOD5y5bnZBZlNlq8KbLqwz56R5TZ/pwXLtPXxW9b3SebsMsm3EaKWFaEaf6de+CZyoBVE9YPoHlE/ShefkERVH1WlqnDDtATFt+LuWmKu1w3XY6cKqtCSEkODh40x6/jvbW48eM0tLSoqcr2mD5BJ2wfIJOWD4BUFHXr18vrmf7JQUJIXq1lDq6p9/0I7bzCSEODg5nHBwY6w8A5AP+tQhV1uptvtl2HlJFoe3IfYePM9IPAMgnBCFUWfXrmrJyU6SrRTn6BvpMtAMAcgpBCFXWwllTdB75ShW1Hu9dMN2LkX4AQD4hCKGKiIiIcBvnaWzWdIzX9NjYWIqQS3zzIi6XfWcrKc4lhBAhTyXkuFbMpaFDBjPdLADIEQzLQFXQzXVYZIYg096TLN527MWNwPHzOEa1jDz3RN48d/XU4R0+PYv1zFQy3owYMmDOvevycNdvAJAfWD6B5RP0qaTlE7GxsS4T52dMOle2qLapS+Slw80a1yeEUBQVFRXVsmVLVVVV2b60PMPyCTph+QSdZH628UsCCm/15p2Z9tKPDBQ6e+zeu0/yNYvFsrS0rFYpCAAVhyAEhXf77j3K3EWqKGre7UrgDSbaAQAFgyAEhTd0kKty5EWpIjv8zNjhboz0AwCKBUEIiic1NfXixYs8Hk+yOWqiB+vB3nJ7UJTus8NTPSYw0BwAKBoEISiShw8fdncdZtV98Fjfu3VbtZsyZ8G1qOShkXVaWdsab3RkP9xLcj+q3dthvMF+/JD+RkZGTPcLAAoAU6OYGqXPb06NZmRkNHfskjXMl9S3sGbDPQAAHLJJREFUJoQQkYAVdlb58SH/gBsDzJQyMzN3+h44deHK+OGDPSeO09PTk2XrCghTo3TC1CidZH62EYQIQvr8ZhD+vWrtmnhdfvtJZYv6e/oHHdrQsmXL7/1UtYUgpBOCkE5YPgHVlFgs3nv0FL/dcKl6roPXvzuk76MGAFBxCEJQDBRFEYoihCX9DVYVfFcDAOiEIATFoKys7D5qmMrTk1J1oyc+83ETbQD4DQhCkFMxMTGjPKZaOLgcOXacx+OJKJJrN158ZzdJjvy8h1jIeuZfm83HB4QA8Duq4NtKGJaRWxUclikpKXHs2ue9kJNl70XVaq71ZL9GzGWz0Ss0bfrOUn20eeu2l+/TuWZ2nFc3BvTqvviP6WZmZvT0r1gwLEMnDMvQCVOj/w1BKLcqGIQHDh2ecSmhqNfSL6X8Tzp7h2S+eKKqRAghHz58CA4O7tOnD/6P+wEEIZ0QhHTC1ChUfeu2+xY5uJcr6dRQNWkQFvpEsmVqajpkyBCkIADIBIIQ5EtKSkq2QIno1ZaqZ7Uc5HfCn5GWAKBqQxCCfKlTp44OS0AK0qXq+q+vDXftw0hLAFC1IQiBeXw+v6CgoHRz3NgxSo8Pl9ujOFc7LdrFxYXmxgCgOlBhugGo1t6/f79hh8+p85fFhNWpvf3iWVOKalr46I/QjepM8t7mOE4mRvXZocd0Qg8unj+TxfpqNT0AwG/DFSEwJjw83NKl985c809zHmfMCz2j299x1Mwef/nt6aKbFRd+Yu6Q9iErTHd0XtKS9+rRDc8JY5nuFwCqJiyfwPIJ+kgtnxg42v1CzeGkmcuXPQoy6voNTI4OYaS9KgbLJ+iE5RN0wvIJqCJyc3MfPYsk5h3LVbWNi/UahIQgCAGAPghCYMbr168pkybkq4/9Cmu2Do+MYqQlAKieEIRAn+zs7NzcXMnXtra2mjlvSEFGuT0oSifaf+TwYQw0BwDVFYIQ6BAaGtp/xPjWnfq1dO7pNs4zIiIinUs4LuOV7u0pt1/kpY727XR1dRlqEwCqIyyfgEp3/OSpqWt8cnssIV2cCUX5v7obOGqaWr+Fbq6jmuyfE7zBPr/dWCHH0CBkX2MTnXV7tjDdLwBUL5gaxdRopWtp7xI7cB8xLPOMiNRXLW4vfHHvCiEkJydn9z6/T5nZc6Z44DkSMoSpUTphapROMj/buCKEyhUbG5vO0i2XgoSQWs0y8orfvn3boEEDfX39RfPmMNQdAAA+I4RKFhcXxzds9HVdaNTwzZs39PcDACBFgYOQoiiRSMR0F/Af+vXrp/H6NhGUlKuWFGh+CO/cuTNDTQEAfKGoQXjs2DEbGxsnJ6dNmzYx3Qv8iIqKyig3V6X7vqT002hKrHpnm+fYkfj4CgDkgUIOy+Tn51taWkZGRqqrq1tbW1+5cqXskAWGZejB5/MDAgIsLS0bNGjw4z1fpWS0HbtAPSWCZztaLORrhp/s1sFp94ZVenp69LRaPWFYhk4YlqETbrFGCCGhoaHW1tY6OjpsNrtr16737t1juiM59b1/5QgEgm/W3759W5HDpqamzpq/uL5Fu/H7H9gMdG/XpU/g9evf7YGQP2MN/ljvmxh6Z0kbsspB821Y0Il9O5GCACAnFDIIMzMz9fX1JV8bGhqmp0s/xLXiYmJi7t2793VgREREHD16jMvlStWfPn26dv3GDx8+SNWDg4NnzFv49OlTqfqDBw9GuE85fca/bPZQFHX79u1ebqNX/bsxOzu7tC4WiwOvX+/Qe9A475mvXr0qW78SEGDXtW/7nq7Xb9wo7VYkEl24cNGmU6/GVg67fPYWFRVJ6gKB4PQZf0vnrjUbtZw5f8n79+9L66dOn2nTvkuNJhauoyaWdpufn795+876Fu1sB09qZGlf9lDJyckz5y+p2ajF0AlekZGRkuKISdO2p5ulzn6c7/pv9rTrzzquGTVzSWJi4jfP8M5YcWox9ZeVsp6e3pwZU6d5e+EfzgAgXygFdO3atREjRki+njdv3r59+8p+VyAQKCsr//gIIpHo2LHjFvYdje376XaeYNq87eoNWwoKCiiKOnT0WPN2ziZOA9UHLDZqbOE+bU5KSgpFUYePHTdv61ijw1DlUVuNWjk59x78LCyMoqjjp840sbQzdhlJPI/ptx/ayMrxzLmLFEWdOXexfisbg05jyawrOv3m1mzS+p91GymKCgi8XrdFW/0uE8mC++zRW42bWbuN8xCLxQ+CHtZpbqXf3ZP89ZQ1/byRTc+2zl3z8vKioqJMzdvo9ZpKlkeTZWH63T3rNbeKi4tLSkoybWqh23smWfmCbErhuK0wbmxx48bN3Nxc0yYtdfr9QVbHkd2Fyp6HDVs6bNi2SyAQNGhppd1vLlnzmuzlk3m3DB0HjZ08QywWN2xlrT58HdmSRvbyJYdqYeNEUdS0eYuNWjsrex4huwvI7KtGDq7OPQd8+PDBuE0Hspdf9n9K3ie9Zv359Xl+kSM2PsKPyxVLNktKSng83u/9nw8VVVRUJBKJmO6iusjPz2e6hWpE5mdb7j4jTE9PP378eGRkpEAgOHbsmKSYl5f3559/Pn782MzMbM2aNSYmJs7OzrGxsSoqKo6Ojj4+PhYWFqVHqMhnhAFXr45ctjvfbSsxqEsIIcW57MC1M9pqjxw8oMv4OTljDhK92oQQIhaxnhzrmnPrwPb1lt0HZ7n7E92anw/x7lmjK7Mjgm42snbO8A4g2iaf63lpJnv6JIQ/amrTPm3yNaJt/LkuKDHa3fvppSNdXIcnjj71+fiEEEL0jk06vXjM4jWbn3ZcQ2o3L62r39q42kn7/pOwi7VHln1KAys6YDT/jp621q6CliKboWXO3Rvrm7OH9e/11zN+SaeZX+q8wlpbO25asWTysdC8/mvKngeTjQ4+a5a477qSPXR32brRoVGnl3sP856b8Udw2ftiGx4Z172h1mkVJ5HdyHInVCQw2WifFB3KZrNv3Ly5eqtPo/r1Zk+dPDau8cxWShOafn7jQeoxTFCp8BkhnfAZIZ1kfrblLgifPXu2Y8cOQ0PDXbt2lb4zOXr0aC6Xu3bt2osXL27evDkxMXHdunX37t3T1tauWbOmj49P2SNUJAjtuvYNdV5JTFuW+TFezU1ODrbWF2oOp5p1Kruz8WZn186OB3iWItsRZeuGR8aNsjHdm2rM7Ty7bJ1zbeXYWjknklTzBqwtW1d+dsY1P/DeR3HWaL9y3byPbvdg8bt8UYb31XL14py6u3uUEOWMOY/LPaWBEhuvsyGUOGNeCFFRK9fS7j6qhelpU64TTYOydW3/WbopT1NGHiImjcvW2Xe3G0Wf/ui6lZi1LffScfcb3VmW0tyN5zK1XD3hkfrZP0s6eBOH0eXqIkGNjfbHfbaNmzqnsG67XHsPVk6KepCPOhEkPThf+p8sgpBOCEI6IQjpVPWDUCIiIsLR0VEShJmZmaampq9fv5aMhrZq1eqvv/4aOnRoamoqn8//+qZcQqFQTU1t8eLFZYvm5uZDhgyRfJ2UlOQ0bHLmVOn5DvapOSTuDn9phNSzgZSC9isFrhP+81wqdUj8Q+UDE0SLnxAtw3L13FSlf13E0y6UvbwjhBCRgPW/9u40romrXQD4CQSDgGyZSAMRbA2CUoUICDGAgiAutQZRwPWK3r4u1bq0ry0uWNrS91oVr+BSF/ordQEBa2+x9CqFq7JIBTdckCIEZA8KSYCQhWTuh7ExjQtQfROTPP9PwzPHycMhzpPJnDNnqzu+5FvkEabx0qTPXPFZcShwuWb8K3/cYxqK+EKzg44sQjiOVp7SjJ9LJN3MwbeVasav/UjK/AT/rxrNZY/qr5scmq+ML0cWdn/9FZpJOyfjm84j2jt/ieO4VbwbBWM8Xl/wlzzLs4a1Vti03mqY9Q2iu6vi5nm7v2BbfrR6JfEjFEJtgkKoTVAItWlQvT1kyBDSM8u9adCD/yRVVVV2dnaqgufr63v79m2EEJ1Of8mjKRV/pVQqVbuUSiVCz+kXEplMUioQrtSIm8rFFIo56hVqxE0EzTb2VPSoTvNA/GqH4TTThpua8ccP38KoFnVXNOPdj4bbWtnV5GvG+6RUk15q7TNxHKcJqx2EfyCZWGMPVlswmjb02ZSoFZlT2L6k+wUacZvy40u4M81L0zTiFiXHoqdPsbj1o+ZLV+aHTwv1cKaRC4+iPumTYONt2//bk7g4lC9WqFdBhJCEs+LAsR/ezA9bAABA0INnjfL5fPV1eWxtbfsdJkoikRITE1+0193d/W1780fN95Dj2KfRPqldTcGMOdPTKn5Rer3/NI7jtteOf/zRP74oTROH/VP9ONTfj+77/JN1qYcfjzyiHsdKjxz7ZseyLTvb/f7yVapN8aHkr7at3ZIgnh6HTM1U8aElqds++Wjfke87BS3Ilq6Kk8tOL1sYfe+PB7k1V9Ao9tMD3csLCWC/zaDvuZYlZ//H03jjbTdH+3XLF/3jxGGR+r1AQTNV2pb01f7QVfGP3YMR6c9PP2KBJa8o6WRBLnuqxHfR09uZwlarO/+TUlKQPylUPHXT0/YIYaVHth3cQafTv0k+eCqJIx4VRGmuGE2323FgZ9GVq/IJ8zT72sKux8rxwYMH7777LhGAK0KtUSgUFAoFrgi1QyaTUSiU/tuB1+G197Ye/CexsbFRjeZHCHV3d6vmTvxt2zeuHvbLDiRofvJzr2jIuS8XzJvz2fo1tnlfI96fsyDEAsqviZP9fT9c9YHl1eMm184ghRwhhHo6zPN2uQ4fFhMTY8u/MzQ/CXU/RgihrnaLvG9o4saZM2d6ujjYZq9HLfcRQkjYanH+X7a8SxER3CXRkdRjkaS7FxCuRIJmq9wv7G6kL1u88PPNG6jHIsyKU5G0B3U0WJ2Lxy4lbVzzQcLm9Q5n1g77ZQfqaEDtPOuft9B/idu+6cP1qz9wuXaUeiIW1ZQi/gObnzbT02N3xm+eG8Fl9dXQ9oeZlmeipjs2ZzY6HpuzNzHey8trrp8bbbe/ef5exCuzPbPB8WDY7i/j7e3t9ybEMdMiaCdjUVmW3feLRp2MObDzKwzDVscuxnazKZcOoK520/JM2v4wzkhbLy8vBweHPYkJD++Wn1gzrTzneNH//hQWGjorPNS+VvOKE8l7TR/z3NzcXvHvBQAA/0avdxDq63L9+nVzc3Nim8fjmZmZCQQC4segoKBDhw695N8OcPrEd2k/uPsGYmyubdgHjDGsr3buJobkXr58OXRONM3D3z546YixE3bu+W+hUIjjeE1NzeqNm4e7jsMmzXV512dvygEiTkzCc3nXB2OFvOPpt//Q4e7ubuIlfs7JmRgykzqaxWSxDx9N7enpIV69oqIiJnYVdeQYd9/A79J+6O3tJeJtbW3bv/wX3XXcWL/Jx0+eUs00kEqlx0+eGus3eTwn5HRmlkwmU/0iRUVF4ZELWUHTzpz5US6Xq+J1dXVrP4njhM/5+ecc9TH0QqEwKXl/KDcm59w5jbH1RUVF6z757OrVq+rBjo6Or3clMT39Pvrnlvr6+pf3KtPLH+2qV59WQY49unlbgqoBTJ/QJpg+oU0wfUKbDH/6hFKpFAqFFRUV4eHhLS0tJiYmNjY2gYGB06dP37p1a1lZWXBwcF1dHYZhLzrCoB6xVl5e3traOnPmTI1vkFpbW6urqwMCAjTuskokksrKShaL9eyhiEWFno13dnY+9xJWLpebmZk9G9dfJ9JPb0zYJfT/T7lvDOrpsCo5anXn52uX8xwdn8wVgcEy2gSDZbQJBstok+GPGm1tbR079umtO2dn55s3b969ezcyMrK7u1sikSQnJy9cuPAlR4BnjeoQn89POZx67IdTVIz62bqVUfMi1cseFEJtgkKoTVAItcnwC+FLPHr0yMbGpt+rqEEVQpFIJBaL33rrrf6bglfW3t5uampqb2/ff1Pwypqbm21sbCwtLXWdiFHg8XgMBsPAvuN5Y1VXVzOZzH4nRQycPn1axDDstb/P0tPT4+LiXu8xwYvs2rXr4MGDus7CWKxbt+7cuXO6zsJYREREVFRU6DoLY+Hr6ysQCF7jAfWpEAIAAACvHRRCAAAARk2f7hEOkEKhcHNzc3d3778pQq2trV1dXa6urv/urABCiMfjkcnkESNG6DoRo1BZWYlhGI1G678peGU3btxwdXW1srLSdSJG4cqVK76+vmTygB4Ik5KS0u/i4QZYCBFCVVVV1dXVus4CAACAjgUFBVlbW7+8jWEWQgAAAGCA4B4hAAAAowaFEAAAgFHTg9UnXl1VVdXRo0clEsn8+fMnT56svksgECQnJzc1NXE4nCVLlhAzNFXto6KigoKCdJS1vmpvb9+/f39bW1twcHB0dLQqLpFIcnNzi4uLZTKZn5/fggULTE1Nz58/f/Pm0/WqPv30U12krMd+//33kydPmpqaLl++fNy4cap4bW1tVlaW6sfIyEgmk4kQysjIuHjxooODw9q1a2EczWCVlJSkp6ebmZmtWLHCw+Ppst6//vqr+iRCCoWyYcOG48ePNzc/eay/g4PDsmXLtJytXqusrCwvL29ubl68eLGTk5P6rq6urpSUlPr6+okTJ8bGxhLPTqqpqTl8+HBPT09ERERoaOhgX87wrwgbGxvZbLaFhYWHhweXy/3tt99Uu3AcDw0NvXfv3qRJk3bt2pWQkIAQamhoYLPZlpaWHh4ec+bMyc9/ZjlA8GJyuTwoKKi+vt7f33/79u1JSUmqXXl5eXv37nVwcBg7dmxiYuKKFSsQQj/99FNubm5nZ2dnZ+frnSFrDK5evRoWFjZq1CgHB4eAgICqqirVrqqqquTk5M4/yeVyhFBSUtL27dv9/f0fPnwYFBREBMEAFRcXz5gxY/To0VQqlcPh1NTUqHaJxWJVV2dnZ589exYhdOjQofLyciIoEol0l7j+wXF86tSpmZmZn3/+eV1dncbeWbNmlZWVcTicgwcPEh+d+Xy+v7+/iYmJp6dnTExMTk7O33lJw7Zt27aoqChiOykpadq0aapdFy5cYDAYfX19OI6Xl5fb2dmJxeItW7ZER0cTDfbs2RMeHq79nPVXdna2u7u7UqnEcbygoMDR0VG1Job64hjXrl0zMzOTSCSrVq1KTEzUTa76Lyoqatu2bcT26tWrP/zwQ9Wu3NxcPz8/9cZyudzR0TE/Px/HcaVSOWbMmOzsbG1mq++4XG5CwpOlVFasWLFx48bnNhszZkxaWhqO42w2+9y5c9rLzxBRqdSioiL1SFFREZVKJRaxqaystLS0FAgEX3/99XvvvUc0+PbbbzkczmBfyPCvCIuLi6dOnUpsh4SEFBcXq++aPHmyqakpQmjChAlKpfLevXsvaQ/6VVxcHBwcTHzDHBgYyOfza2triV3qk346OzstLS2Jp2+XlJRs3bo1NTVVfdVJMBAlJSXBwcHE9rPvVT6fT1yUP3jwACHE4/Ha2tqIr/pJJFJwcDC8twelpKQkJCSE2H7RmaGoqKipqWnevCcrVGdnZ8fHx2dmZioUCu0latBKSkoCAgKIU4e7u7u1tfXNmzc1TtqlpaWD7XDDL4QtLS2qNZtoNFpPT4/qawr1XSQSiUajtbS0tLa2qrfv7u7u6urSftp6Sr33yGSyvb19S0uLRpve3t6NGzdu3bqVRCIxmUwPDw8LC4sTJ06MHz++s7NT6ynrKxzH29ra1N+r6l09bNiwkJAQKyurO3fusFisvLy8lpYWW1tb1ccRGo2muoMF+tXX1/fo0SP13n5u73333XcxMTEWFhYIIV9fX2dnZzKZnJCQEB4eDrXwtVA/wyCEhg8f/uxJW6FQ8Pn8QR3W8AfLUCgUmUxGbMtkMvVlgCgUivptEqlUam5u/pL2oF/P7VL1BlKpdO7cuePHj9+0aRNC6OOPPybicXFxkyZNOnLkCIyXGSDinanqbZlMpt7VAQEBAQEBxDaTyYyPj9+3b5/6n0Ymk8HqYwNnampKJpPVe/vZ3uvu7s7OzlaNQti3bx+xsWHDBiaTmZeXN336dK0lbKgGctJGCGmcdvpl+FeEDAajsbGR2G5oaMAwTNVHTk5ODQ0NxLZUKm1vb3dycnJyclJvT6PRKBSK9tPWU+pdKhKJRCKR+ogvuVweHR1taWn5/fffa6yTZ2JiMmHChIcPH2o1XT3n6Oio/l7VGFyn4uPj09DQ4Ojo2NXVJRQKVe1VCyaDfpFIJDqd/vLePn36tLOz88SJEzXi1tbWrq6u8N5+LdTPMAqFoqWl5dmTtoWFha2t7aAOa/iFkMvlZmZmEssTpqenc7lchND169dv377N5XIvXrzY2tqKEDp79uzIkSPd3d2f2x4MEJfLPX/+fEdHB0IoIyPDx8eHwWDU1NQUFhYqFIqlS5fKZLKTJ0+qvqBTnZeFQuGFCxe8vLx0lroeioiISE9PRwjhOJ6RkUG8Vy9fvlxbW6vqWBzHs7KyPD09GQyGj49PRkYGQqizs/P8+fMRERE6TF7vREREnDp1CiGkVCpPnz5N9PalS5dUwxpTU1OJsdAIIalUKpFIiO0//vjj1q1bnp6eOkjagFRUVNy4cWP27NmlpaXEp4rc3FwbG5sJEyZwudzs7GziWpA4aQ96qcJXH9jzhhOLxZMmTfLx8Zk5c+aIESN4PB6O44sXL16zZg2O4+vXr3dxcZk/fz6GYcQQL7FYzGazfX191duDgYuNjWUymZGRkRiGFRQU4Di+e/duNptNnLLHjRvn/aempiYqlTplypT3338fw7C5c+eqjywF/WppaWEymVOnTuVwOF5eXgKBAMfxiRMn7t27d+HChSwWi8vljhkzxtXV9f79+ziOFxQUYBhGzCmMjY3Vdfp6prGx8e233w4LC2Oz2d7e3iKRCMdxFot14MABHMfv378/ZMgQPp9PNK6urrazs5s2bdqMGTOsra3j4uJ0mboemjdvnre3N5lMdnNz8/b2fvjw4cqVK5cuXYrj+JYtWxgMRlRUFIZhWVlZOI5LpdLg4GAvL6/Zs2fT6XTi3T4oRvGs0b6+vpKSErFYHBgYSCzY3dzcbGJiQixMX1FRUV9f7+PjQ6fTX9QeDMr169ebmpr8/f2JKdsdHR0ikQjDMI072M7OzkKh8NatWz09Pe7u7rAGyN8gkUgKCwvJZDKHwyFuZtfV1VlbW1taWt64cYPP59PpdC8vL9WK1u3t7aWlpQwGg8Vi6TRxvdTb21tYWDhkyBAOh0N0KY/Hs7W1tbOz6+rqEggE6iurNDQ03L17l0QieXh4MBgM3WWtlxobG1W3/RBCI0aMePz4sVKpJL7Pv3v3bm1tLYvFUnWsQqEoLS0ViUQBAQHDhg0b7MsZRSEEAAAAXsTw7xECAAAALwGFEAAAgFGDQggAAMCoQSEEAABg1KAQAgAAMGpQCAEAABg1KIQAGKD09PTCwkJdZwGAfoB5hAAYoHfeeScsLOzw4cO6TgQAPQBXhAAAAIwaXBECYGhcXFwaGxvNzMyIhfEWLVqUkpKi66QAeHMZ/nqEABibtLS0BQsWeHt7b9iwASEEyy0B8HJQCAEwNFOmTBk6dKiTk1NoaKiucwFAD8A9QgAAAEYNCiEAAACjBoUQAACAUYNCCIABsrKy6u3t1XUWAOgHGCwDgAHy8PDIz8/PyclxdHTEMMzFxUXXGQHw5oJ5hAAYoJqampUrV5aVlYlEouXLl6empuo6IwDeXFAIAQAAGDW4RwgAAMCoQSEEAABg1KAQAgAAMGpQCAEAABg1KIQAAACMGhRCAAAARg0KIQAAAKMGhRAAAIBRg0IIAADAqEEhBAAAYNT+H/QxlXM2C8ZzAAAAAElFTkSuQmCC", "image/svg+xml": [ "\n", "\n", "\n", " \n", " \n", " \n", "\n", "\n", "\n", " \n", " \n", " \n", "\n", "\n", "\n", " \n", " \n", " \n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n" ], "text/html": [ "\n", "\n", "\n", " \n", " \n", " \n", "\n", "\n", "\n", " \n", " \n", " \n", "\n", "\n", "\n", " \n", " \n", " \n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n" ], "text/plain": [ "Plot{Plots.GRBackend() n=1}" ] }, "execution_count": 6, "metadata": {}, "output_type": "execute_result" } ], "source": [ "plot(t,abs.(u),m=:o,label=\"\",\n", " xlabel=\"t\",yaxis=(:log10,\"|u|\"),title=\"LIAF solution\")" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "It's clear that the solution is growing exponentially in time." ] } ], "metadata": { "kernelspec": { "display_name": "Julia (faststart)", "language": "julia", "name": "julia-fast" }, "language_info": { "file_extension": ".jl", "mimetype": "application/julia", "name": "julia", "version": "1.4.1" } }, "nbformat": 4, "nbformat_minor": 4 }