{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Roundoff in finite differences\n", "\n", "Let $f(x)=e^{-1.3x}$. We apply finite difference formulas of first, second, and fourth order to estimate $f'(0)=-1.3$." ] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "using FundamentalsNumericalComputation" ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [ { "data": { "text/html": [ "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "
hFD1FD2FD4
Float64AnyAnyAny
0.1-1.2190456907943883-1.3036647620203023-1.2999875986418996
0.01-1.2915864979712381-1.3000366169760795-1.2999999987623276
0.001-1.2991553660477848-1.3000003661667279-1.2999999999998408
0.0001-1.2999155036632146-1.3000000036618076-1.3000000000006366
1.0e-5-1.2999915500404313-1.3000000000465661-1.3000000000174623
1.0e-6-1.299999154987745-1.2999999999883585-1.30000000007567
1.0e-7-1.2999999150633812-1.300000000745058-1.300000000395812
1.0e-8-1.2999999970197678-1.3000000044703484-1.300000005401671
1.0e-9-1.2999999523162842-1.3000000715255737-1.3000000566244125
1.0e-10-1.3000011444091797-1.3000001907348633-1.2999999523162842
1.0e-11-1.3000030517578125-1.3000030517578125-1.3000011444091797
1.0e-12-1.2999267578125-1.29998779296875-1.300018310546875
\n", "\n", "\n" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "f = x -> exp(-1.3*x);\n", "exact = -1.3\n", "\n", "h = 10.0.^(-1:-1:-12)\n", "FD1,FD2,FD4 = [],[],[]\n", "for h in h \n", " nodes = h*(-2:2)\n", " vals = @. f(nodes)/h\n", " push!(FD1, dot([ 0 0 -1 1 0],vals) )\n", " push!(FD2, dot([ 0 -1/2 0 1/2 0],vals) )\n", " push!(FD4, dot([1/12 -2/3 0 2/3 -1/12],vals) )\n", "end\n", "\n", "pretty_table((h=h,FD1=FD1,FD2=FD2,FD4=FD4),alignment=:l,backend=:html)" ] }, { "cell_type": "code", "execution_count": 8, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlgAAAGQCAIAAAD9V4nPAAAABmJLR0QA/wD/AP+gvaeTAAAgAElEQVR4nOzdd1gTSRsA8MmmEDqBUETpKk0ERUHFiooVu9ixgx07tvM4eznvE0UUu1hORNETK4KKAoIICAiCgAgI0juElN39/liPi8GCkrAJzO+55x6ZbHbfDJp3Z3YKBcdxAEEQBEHtFUJ2ABAEQRBEJhrZAUAQJH4fP378/fffe/bsuXz58m8ds2fPnpycnL/++ktRUbE1YxM7DMOWLl2qra29Y8eOZr4Fx/Hg4OC4uLjCwkIAwP79+9XU1AAAVVVV165de/fuXXV1tYGBwZYtWyQYNyQ1KLBrFJJ+tra2ycnJTcuNjY3T0tIKCws7dOjQWKikpKSsrKyrq2traztu3LiRI0dSqdRWDFYqJCUlWVtbT5gw4ebNm2lpac+ePevdu3ePHj2Ej+ndu/erV69KS0s1NDTIilMsBAIBnU43NTVNS0tr5lvmz59//vx5AACLxQIApKam6ujoVFRU2NnZZWZm0ul0JSUlGxubx48fSy5sSHrAFiEkA/h8Pp/P79mzp4qKinC5rq5u45+pVOqQIUOIP9fX16enp8fFxZ08edLCwuLixYs9e/Zs1YjJpqSkNHjwYCsrKwDA8+fP3d3dd+3aJZII262cnJzz589bWFg8e/ZM+Cbg8uXLmZmZS5Ys8fHxaYc3T+0ZTISQzDh69Gi/fv2+9aqCgsKjR4+ES6Kjo7du3fr48WNHR8fIyEhLS0vJxygtjI2Nnzx5QnYUUio9PR0AMGzYMJGm8Lt37wAAU6ZMgVmwvYGJEGqz+vTp8+jRo4kTJ96+fXv58uVPnz79/vG1tbWhoaEfPnygUqk2NjYODg4I8nk0WU1Nzbt37zQ0NAwNDfPz80NDQ4uLi8eNG2dsbJyUlKSoqGhmZlZRUfHgwYP8/HwHB4e+ffsSb8zMzHz27FlpaamOjo6jo2OnTp0aL1dYWJifn6+vr6+pqfnmzZvIyMi6urr58+cTnXXCKioq3r9/r6Oj07Fjx8bCN2/ecLlcQ0PDxm9zHMfj4+OZTKalpSWHw0lNTWWxWHw+Pzc3FwBQUFAQFxdHHGliYkI8EiOgKBoSEpKWlqaoqDhs2DBjY+Pv1FJqaiqHw7GxscEwLDQ09N27d1paWjNmzCBeLSsrCw0N/fjxo6Kior29vXAbtLKyMisrS1tbW7gSAABZWVmVlZUWFhby8vKvX78GANjY2DQ0NNy7dy87O5vNZjs5OQl3fQMASkpK7t+/X1paamhoOGrUKDqdLhIkjuMxMTFxcXFEFQ0bNozoS+DxeMnJyfHx8QCAqqoqokLYbLa8vHxeXl5mZiYAICcnhyjv3Lmzqqrqd6oCajtwCJJ6RBdfZGTkV1/99OkTAEBZWfmrr3748IFGowEA3rx5851LnD59WiQD2drafvjwgXiVeFY0f/78ffv2EWcDAJw5c4YYamFvbx8QEKCkpESUr1u3DsdxDofj6upKoVAaT0ij0TZs2ICiKHHOffv2AQC8vb1nzZrVeExycnLT2Ijno+PHj28sqampIb79PT09GwuJLDJp0iQcxxMTEwEAEyZMGDBgQNN/9Tdu3MBxvFevXgCAV69ede/eXThIb2/v71QUcXB0dHSXLl2It1hbWxMveXt7i4y7cXJyKikpIV4NCgoCAKxfv17khJMmTQIAvH79GsdxFoulqqoaFxenr6/feBIFBYWgoKDG4y9fvtxY1QCAjh07RkdHAwBMTU0bf+N2dnbCYbBYrMuXLxMvNa0NNze3I0eONC2/ffv2d+oBaktgIoRkQEsSIY7jffr0AQAcO3bsWwecPn2a+Eo9depUUlLSy5cvV6xYQaFQzMzM6uvr8X8Tob6+vpKS0o4dO0JDQ0NCQhITE4lEqK2traCgsGbNmrt374aHh4eHh+M4Pn36dACAra3tw4cPs7KygoKCiJbWxo0biYsSiVBfX19fX9/Hx+f58+dBQUGFhYVNw8MwTFtbW1VVlc/nEyV3794FACAIYmtr23jYX3/9BQDw8fHBhRJhbGzsmjVrAADz589/9K+ioiL830RoZGQ0cuTIO3fuvHr16sCBA3JycjQaLTU19Vt1RSRCfX39MWPGBAQEREVFEVnqzJkzAAA2m33u3LmMjIzIyMgRI0YAAOzs7Hg8Ht7sRMhkMjt06ODq6hoSEvLy5cuNGzciCKKiolJRUYHjeFRUFJVKVVJSOn78eE5OTnx8/PTp04lHxUQirKmpITL09OnTX758mZ6efuTIEUVFRQqFcvfuXQ6H8+jRo61btwIApk2bRtRGampqbm7uo0ePhg4dCgA4fPgwUd6YwqE2DyZCSAYQidDMzMz2S0lJSXgzEuGCBQuEM5CIiooKZWVlFRWV7Oxs4fKVK1cCAHx9ffF/EyEA4Nq1a8LHEIkQAODl5SVcHhMTAwDQ0NAgvr4JWVlZdDqdRqPl5eXh/yZCOp2ekZHxwxog+h6jo6OJH9euXUuhUKZOnYogSOP39ejRowEAaWlpuFAixHH85MmTAIBdu3aJnJNIhCNGjMAwrLHQ09MTALBnz55vRUIkwoEDBzY2bXEcb2ho0NLSAgCEhYU1FvJ4vG7dugEA/P398WYnQgDAkiVLhA+YOnUqACAgIADHcWI81NmzZxtfRVHUwcGhMREeOHAAADB06FDhD+Xv7w8AMDc3JwqvXr0KvmxME2bPng0AiIiI+NZnh9oqOKEekhmfPn368CUul9ucNxLPh6qqqr766j///FNTUzN79mxDQ0Ph8qVLlwIA7t2711hiYmIyZcqUpmeg0+lr164VLrl58yYAYMmSJcKP4oyNjV1cXAQCwT///NNYOHny5M6dO//wIzg6OgIAwsLCiB/DwsKsrKxmzZqFYVh4eDgAQCAQRERE6Orqmpqa/vBswtavXy/cf+vk5AQAyM7O/v67NmzY0PgAFQAQERFRXFxsZ2dHxEmg0+nr168HABApsPk2bNgg/OPw4cOJkCoqKp4+faqtrU1kLAKCIMKVT1zL09NT+EPNnDlTX1//7du3qampPxUJ1E7AwTKQzLh37953Ro1+R21tLfg3HTaVkJAAAMjMzNy0aZNwuUAgAADk5OQ0lpibmwt/vTbS09NTVlYWLiG+cJtOV7C1tb18+bLw17GFhUVzPgKRDMLCwrZs2VJWVpacnOzh4TF48GAqlRoWFjZ58uSYmJjq6urx48c352zCRBKntrY2AKCxpfstIkNwiU/UdI6Kra0tACAlJaX58cjJyYnckTSG9PbtWxzHLSwsREbH2NjYfD8SKpXao0eP3Nzc1NTUdjV4GGommAihto8YDSg86VBYRUUFACAqKio2NlbkJRaLJfydy2azv3qGpuVE6iW+wYURJTU1NT88pwgDAwMjI6PIyEgOhxMaGoph2NChQ1VVVXv16kU0E4n/E0+5foqCgoLwj0Q7D//ROhsiYROfl+gdFUaUCH/eH2IymcJtTeGQvn+VxkhoNJq6urrIMU1rHoIawa5RqI0rKysjntgRT5KaIhpz+/fvL/+axikHAICvNge/Wk6cs6ioSKScaGl9q236fUOHDuVyuZGRkWFhYTQajRgOOnTo0Hfv3uXk5BCJULhnsjURn7e4uFiknKgB4vMS+QxFUZFjiPTWHMRg0aa1KlyirKwsEAjKy8tFjmlJzUNtHkyEUBu3fft2DofTvXt3YmxIU0QH5osXL8R4UaL/TTiJEohGJzGE5GcRrb2wsLCwsDB7e3viO50ovHPnTkxMTNeuXfX09Jq+kcFggK9lIDEiPtGrV69EyonPS4x10tHRAU3SGI7jzV8XzcLCAkGQlJQUkWfDxLzA70QiEAiIY36t5qE2DyZCqM0qKSlZvny5r68vnU739vb+Vntu0qRJqqqqgYGBTfMW+Jn2ijBiTI2fn59w0yQjI+P69esMBuMXnuQBABwdHSkUyuXLl9+/f9/YBdqvXz95efl9+/Zxudxv9YsSfcJ5eXm/cNFmcnBw6NChw6tXr0JDQxsLuVzuoUOHAADEsE8jIyMAwJMnTxoaGhqPuXTpEjHfvznU1NSGDh1aUlJCjAIlYBhGzBshEDV/4MAB4d7dixcvfvz40crKyszM7Nc+INS2wWeEUBvB5XKJ0S4YhlVUVKSnp798+ZLL5WpoaJw+fXrw4MHfeiOLxTp27NicOXOGDBmydu1aBwcHHR2dvLy8lJSUCxcuuLm5rVq16meD6dGjx7x5886fPz948OBdu3aZmJgkJSVt2rRJIBD89ttvIuukNJOWlla3bt2IyfXDhg0jCplMpoODA5F+vpUIra2tGQzGlStX1NTUjIyMaDTa8OHDibQkLnQ6/eDBg7Nnz3ZxcdmzZ8+AAQMKCgr27NmTmprav39/IjlpaWk5Ojo+fvx43Lhxa9asYTAYjx49OnLkiJGR0Q8HqTbavXv306dPPTw8ampqRo0aVVFRcfDgwYKCgsYD3N3dT548+fjx4ylTpqxatUpdXf3+/fteXl4IggjnSwj6AqmTNyCoWZozoV6EsrLygAEDDh06VFpa2pxL3Lp1S2SwIgCgc+fODx8+xIVWlhF5V+PKMk1PyOVyly5dKrxqpZyc3O+//944v42YR0jMU2ym1atXAwAUFRUbGhoaC/fu3QsAEJ5QiH85jxDH8UuXLgn3mgqvLCNSP8Soy7Fjx34rBmIeYXV1ddOXTp06JbIm2YQJE4RnUmZnZwsPUlVSUrp69WrTlWVEThscHAwA8PDwIH4MCgoSnpRiYGBAdHs2riyTn58vct+jra0tvDYNnEcIiYDbMEEyIDc3l8vl6unpMZnMpq+iKCo8yQFBEFVVVTU1tW/1hX6LQCCIjY1NT0/n8XgdOnTo3Lmzubk58RKHw/n06ZOysrKmpmbTS8vJyQmvAirs48ePERERlZWVmpqagwYNEh5sWVlZWV5ezmazmz+Co7q6urS0lMFgCC/XWVdXV1RURKVSDQwMGgt5PF5OTo6SkpJw67O+vr5xKRxFRcX8/Hwul2tgYCCcrfl8fl5enoKCAvFI76ufiMfjGRoaioztJNTU1ISHhzeuNdq1a1eRA3g8XlhYWG5uLovFGj58OIvFKioqqqur69SpE4PBIJZAE7kjIcJWVVVtXFW1srIyNDS0rKzM0NBwyJAhdDo9OzubTqcLJ/ukpKSEhAQOh2NsbDxgwAB5efnGl2pra4uLi9XU1EQGlxYXF9fW1urq6n71rxnUhsFECEEQBLVrcLAMBEEQ1K7BRAhBEAS1azARQhAEQe0aTIQQBEFQuwYTIQRBENSuwUQIQRAEtWswEUIQBEHtGkyEEARBULsGEyEEQRDUrsFECEEQBLVrbTwRFhYWcjgcsqNoVRiGkR1CGwFrUlxgTYoLrEkJaeOJcP78+U+fPiU7ilZVV1dHdghtBKxJcYE1KS6wJiWkjSdCCIIgCPo+mAghCIKgdg0mQgiCIKhdg4nwM4FA8P79e7KjgCAIglobTISgoKBgw7Y/9Cxs+0xx69Z38OW/r/J4PLKDgiAIgloJjewASFZdXW3db0jlME/BmghAZ5aU5S65fOzvW3fvBFwkOzQIgiCoNbT3FuHJsxdq+y0S9JkD6EwAANDQr52wP/ZNRnFxMdmhQRAEQa2hvSfCY2cvNti7ihRW9Hb1OXmWlHggCIKgVtauE2FDQ0NtfT1QUBMp52uYvM2AA2cgCILahXadCJlM5uhhjpQ390XKqc9PGYxe1ICSEhQEQRDUqtp1IgQAbPJYygo/AjjV/xXlJelyC9JZPU0DBd5vsHoBecFBEARBktfeR42am5tvnj/piO+wegP78o72rITLBqr046e87e1or8vwv5KxvQH8JeaIhyWVJUd2rBAEQZAEtPcWIQBgvceKDylxl9ZM3KCb+zLQL/7JfXu73gAAGw2K/2BqhDPtUz0wucb3eIF+qic7VgiCIEjcYCIEAAAEQUaOGLF/5+8mJiYiL3VWofj1pyZMpAEALK7zXZ+imdU4GTFCEARBEgETYbMYKFG8+1LTp9KNVUC/2wLXp+jbSpgOIQiC2gKYCH+Cljzw6knNnEa3ZVOG3UOdQwSxJTAdQhAEyTaYCH+aCh14dEPeudCG6SKTQtH+wYLgXLhtNARBkKyCifAXKdKARzckaxrNzQzZEIMR6RA2DyEIgmQOTIQtwkCAaxckdQrN0xrZEY/ZBAn8MzAU5kMIgiDZAROhGCAU4KyPxE6gHbKn+qVhXa8JvN9gcGEaCIIgmQAToTgN60iJdKZdGEQNLcCMrvL3J8KFaSAIgqQdTITi11+HEuxEuz+SllKBGwfwveLRCi7ZMUEQBEHfABOhpBAL00QKLUxTUA8fHkIQBEkdmAgly0RoYRrL6wK4MA0EQZC0gYmwNTRzYRoej/fmzZvWDw+CIKg9g4mw9TRdmOblvwvT5Obmemzcqt+t15BFm01s+vj6naqrqyM3WgiCoHYCJsLWJrwwzeRQtH+wIPBtda/BI45VmRetfVG6KOj93BsbHuWPnjqb7EghCILaBZgIySG8MM2Kvy6V2bqivacBGgMAAJS16kduffuxNCcnh+wwIQiC2j6YCMlELEyjFHsR6+cq8lJ5n8WHT5whJSoIgqB2BSZCkgkEgtraWiCvJlKOsvSyPuSSEhIEQVC7AhMhyWg02rSJztTX/4iUI+F+Js5ucJ02CIIgSYOJkHzrVrirRfiAmpL/inITOtRlZ7Lt4DptEARBkkYjOwBpER4eHvX82Zx58zt16tTKlzYwMNi/zn2f98QqVpcyfQfW66umHViHzx3r3YuWVI7/mYQZB/CXmCOru1HVGK0cGgRBUNsHW4TglN+JnuZdT6xfgoRfm+roMMHJMSE+vpVjWDh/bsbrmJu7lm7vWhUffDHywa3evXoBALqrU/wHU8NG095XA5MA/qZYtBwuWwpBECRW7b1FmJ6efu7QXn/HzmpMOgBglmXH14VVKxbOi0xIav1gHBwcHBwcmpZbsij+g6nZNcjhN5hpIH+mCbLJmtpBofUDhCAIaoPae4vQ9/ChxeZsIgsSbHRU1QE3Li6OxKi+ykiZ4t2XGjeBBgCwuM53j0A/1sFlSyEIglqqXSdCLpf76P49R0O2SPlMIxU/7/+REtIP6StRvPtS37nQOyiAnjcFrk/RjCqYDiEIgn5du06EcnJy8vLytTzRQZn5dTwDY2NSQmomTSbw6kl9S6ziHSxwCfv6Kt4QBEHQD7XrRAgAmLPI/UZGqUjhtfdVi5YuJyWen6IhB7x6Ut9Poztof17F+1UpTIcQBEE/p70nwnkLF11+VxqcWSzAcABAcR33QPT7jkoMLTUVskNrLmWhVbwnPELHhzOii2E6hCAIaq62kAjz8vJSUlJ4PN4vvFdNTe3hs8icLgPH3nm7ICxr+csSm4UbfFcvKvXbhjXUiz1UySFW8X4/jTbdAJ3zFO0fLAjOxcgOCoIgSAZQcFy2Ww9bt25NSUlRVFSMjY0NCAjo0aOH8KujRo1atWrVqFGjfngeLpeblZVlYWEBAAA4XnnzBC/7LXvpbkRBWUKRS0hNTQ1TUfnvLGxvIqYhBzytkbH6CIXsqGRRTU2NsrKM/falE6xJcYE1KSEynwgb+fn5paament7Cxc2PxGKwvHKf05xMxM1l+5FFGWmmxQI/VPBcHA3D/OKx1AMrLVCZndGYD78KfBLR1xgTYoLrEkJaQtdox8+fIiKirp7966jo6PYTkqhqE1wk7e0Lzm6Hq0uF9tpWxFCAc76yKsJtJ29EN+3mHWQwD8DE8DuUgiCoC/JWCKsqqoqLy+vra0VLgwPDz9x4kRZWZmJiYl4L6cyylWh97CSY55oVZl4z9xqKAA46yPR42jHHaj+GZhpoMD7DcaFm1pAEAT9S8YS4YYNG+bOnevj4yNcOHfuXH9//+3bt2/evFnsV1Qe6qJo51RyZJ2grFDsJ29N/XUooaNpFwZRQws+p0MO3NQCgiBIqhLh+fPnp0yZYmZmduLEicZCX1/fjh07slis+fPnNzQ0nDx5Mjg4eNOmTY0H1Nd/HttZVlamoCCR9TeVh05VcpxSesxTUPpJEudvTf11KMFOtFvDqZFFuFEA3ysereb/92p0dPTY6XO1jMyWr9uUnZ1NXpgQBEGtR4oSYVVV1YgRI9hsdkVFBVESGxu7bdu2Bw8e5ObmZmdn79u3r+m7Zs+e7eDg0K9fPx8fn127dkkoNiWHscrDppX4egpK8iV0idZko0G5NpT6aBTtfTXoeo3vFY9WcPHeg5zGenrfNZxfsiner97aftKClRu3kR0pBEGQxEndqNFJkyb17t2b6ORcunQpgiDHjh0DADx48MDNzS03N7fpWzgcDoVCYTKZTV8aNGgQlUrV1dVtLJGXlxcZWdp8vMRn9ff9ledvp2rr/9oZWkFtba2SklLzj8+uBX+lUgMfhPOjrzbM9vvvBRxn/9knOfyeioosDZoVo5+tSehbYE2KC6zJX8BkMhHkB00+qd6GKT093cXFhfizlZVVXl5efX190/5PeXn5b52BRqN1797dysqqsYROp8vJyf1aPHJ2w2kMuZrzO9UX/UHTNfq1k0gaj8f7qQ9oJgdODgAp+0/G9F//xQsUSk3PGReuBKz3WCHmEGXEz9Yk9C2wJsUF1uQvoFB+PG9MqhNhRUVF46QZol1SXl7+Uw8CGQyGk5PTr8wj/AYl2yE0pnz5yd80Fv3OMDAT12nFiEqlUqnUn3oLhmEZKYlgUk+Rcq7FyKB7mz3XeogvOlnyCzUJfRWsSXGBNSkhUvSMsCkNDY3q6mriz1VVVUQJqREBAADTsg9rxtqy03/wPrwlOxbxQBBk0MCBID1cpJwWFzh+8lRSQoIgCGo1Up0Iu3btmpycTPw5OTlZX1//O72grYlp0Zs1a33pqd+5Ga/JjkU8tqxeyo72+6IIEzATb/0lN9ElDE2FezxBENR2SVEizM3NjYuLq6ysLCgoiIuLKy0tXbhw4dWrVxMSEioqKvbu3btw4UKyY/wP08xWY8Fv5f77G9LjyY5FDHr16uWgr6x5xJEWcwVUFsiH/qn5Z99tHu4f5qg4aFOc7qPOIYLYEpgOIQhqg6QoEV6+fNnd3b26uvrFixfu7u5RUVG2trb79++fNGmSqampubm5p6cn2TF+Qc7ESmPBtvKL+znJL8iORQxuXTkXf+/vlZpZ5tfm7BvIeh8f4bl6uRIdeHRDslxozvrIpFB0+H0B3OMJgqA2RuqmT4jXry+63Wy8vIyyU7+rTVku391BcldpPskty8vDwNUsbNdrTIsJPK0RZ30puouSBLjAsbjAmhQXWJMS0sa/y1oBQ68L231n5XWf+tgwsmORLAYCXLsgKZNpbmbIxpcYseVhW76NgiCofYCJUAzoHU3Yy/dX3T1f9/IR2bFIHP3fdOhpjfwRj/UIEvhnYDAfQhAku2AiFA+6tr7msr3V9/xrI4LJjqU1EHs8xU6g7eyFHEuFezxBECTDYCIUG5pWJ81Vf9Y+DaoNv0l2LK2E2OMpZjzc4wmCIBkGE6E40dS1NZfvr30eXB3yN9mxtCq4xxMEQbILJkIxo7K0NFcd4sQ/rQo+S3YsrY3Y4+nmv3s87U/E6mE6hCBI6sFEKH5UFZbmiv0NqS/bYS4EAPT4d4+nlArcOIDvFY9W8siOCYIg6NtgIpQIRElNc+Wf3IzXVf+cAm16pua3WKlT/AdTI51pn+qBSQB/UyxaziU7JgiCoK+BiVBSEAUl9tI93OyUisCj7TMXAgBMVCh+/alxE2gcATAN5Hu8QAvq22lVQBAktWAilCBEXklz6V5BSX5FgHe7zYUAAENlindfavxEGgDA8rrAPQL9WNd+awOCIGkDE6FkUeTk2Yt3CMqLyi/uB1i7nligp0jx7kt950LvoAB63hS4PkUzqmA6hCCIfDARShyFIcd224FxG8r89+Foex9GqckEXj2pb6fSjVVA39sClzD07Zd7PGEYFhx8Z+6SVS9etIWlzCEIkn4wEbYGCo2usWAbQNGyMztwPhxDCTTkgFdPavZ0uoM2Zdg91DlEEFeKAwD+POKrZ9HT9fhDf4aj82YfE5s+N2/fITtYCIKkCIZhERERjXu2iwXcfaL14Kig3H8/zuNoLNhOoTMkdBWZW5++TgBOp2EHkzFjND9p9/SqFfeBnOLn16qLdPzG5KXE0Wi01g9M5mpSasGaFJd2XpNlZWXHTp09eeEKp4MVNT95qEOfLWuWWVlZtfzMsEXYeihUmsbczYgyq9RvK87lkB2OtFCkAY9uyPtpNMWoM9X93P/LggAAFe36rsNu3vqHvOggCJIWY6fP3Z1My18eVj7zTMn66ADVsY7jp1dUVLT8zDARti4EUZ+xlqahW+q3DWuoJzsaKcJAQMLDG3ivySLl1fbzD/qeISUkCIKkR05OTlZ5A2/ICsBUBgAACoJbOtX0W+R39kLLTw4TYaujUFjTV9M7dS49tgmrryE7GimiZ2AASt6LFFI+JtvadCclHgiCpMf+I8fL7RaKFHLt5/ievdjyB3wwEZKBQlGbuIRh0q3EdxNWJ85HvjJt2+olrBjRxh/1+anwrosCs+GWhxDUrpWWV6DyaqKldCaPx0fRls5Mg4mQJBSK2gQ3ecs+JUfXo9XlZEcjFcaOGaP8Plzh0UFQUwIAACXvVW559umkdMTZ5H/JWNdAwck0uOUhBLVTW1YvU4o8KVJIfRU4y2ViywfTwURIJpVRcxR6Dyvx2YhWlaWkpCxdMNfatPOBPbvLysrIDo0EVCo1JTbywBC20fmJ7P8NsL63/PQ8hyd3g4Z1pESNo50fSA3OxboECrzfYA3temUCCGp3cmrxDQWWaE0ZeBv2X2lZjmqE75qli1t+fjh9gnzVYYFTlq6hMORmd2H10lG7lVUSmFUxx23pGs/Nv3C2tjHAuqioSFtbu2l5VBG+NxF9VYKv7kZdaYkoSHJWRduoSWkAa1Jc2mFN4kJivuEAACAASURBVACcSsO2vULXWVHH0NO37z4QGZ9caTVJKedFB2qt1/pVUyZNbPlVSJieBYl4RdFgKzEPDOxM/DjHosMMM52xJ44v9VjDZDLJjY0sX82CAIB+2pRgJ1pSOf5nEmYSwHc3R9Z0o6pKak4mBEFk+lQP3CIEJQ0gfCzNXI0CgHnQ5XPl5eUB1wIHDthnaWkprgvBrlHy+RzcO8dMS7iEhlBG6KkE/N2+trlvvu7qFP/B1NDRtPfVwDSQ7xWPVsA9niCobQnMxmxu8m3ZlEhnIgt+pq6uvnSJuxizIICJkHR8Pj85KdlKS0Wk3ElP9VbAFVJCkhWWLIr/YOqLcbQKLugayPd4gRbCVQogSPZ9qgfjQtDdCdjDkTSvnlQq5cdvaSGYCElGp9O7W1snF4tOogjJq5o4fRYpIckWI2WKd1/qqwk0AIDVDb7HCzQf7vEEQTKLaAhasEDsBJqNhuRzIAAAJkJpsHy956XML1YJEmD4w5xyl+nTyQpJ5hgoUbz7UlMm01lywOamwPUpmlkN0yEEyZJP9WD8o88NwX29qfRvZKfy8vLjJ46npKSI8dIwEZJvyJAhlcraix5nPckpreEKLqZ+mng72cVUG/kkuswK9H1a8sCrJ/XtFLqxCuh3W+D6FE2HWx5CkCwIzMZ63OSbq32vIfj27dups1x69O95+PnxsYsm9Oxnez3ohliuDhMh+SgUyt2wp4f+vhXFspz++AN1sEtoXLKn74Wyszu5Ga/Jjk72sJnAqyc1axrdkkXpHyxwDhHEl8J0CEFSqpADxj9CdyVg97/bEAQATJ8/M10/z3BLd5a9tv4Kc7oLa/W2NR8/fmx5DDARSgtLS8vjZy8kpmdu3LJVQ0NDrnN39Xlbyv33N6TFkR2aTFKmA09rJHsafZguMu4R6hwiiC2B6RCCpEtgNmYT9Lkh2OO7TwQTExPr6BxWN01AAaWvCgEATE0F1cFa3sePtDwMmAgBACAtLW3h0kVmNubePt7i3e+xJeRMrDQWbCu/dICTDPdq/0VKdODRDclyoTnrI5ND0f7BgscFMB1CEPkKOWCCUEOQ8aNctP/wAYX+LOLPHUcYEX9Qt9O5GhggEAhaGEx7T4QYhg0eMWT0XOdYpTfq7gYnXp636N3t6HEfsuP6jGFkyXbfVRl4lJMUSXYsMkyOCtzMkMxpNDczZGkk2j9YEJwLFy2FINIQDUGzZjQE6+vrDx8+PHToULY6G60TTXgYH2Uw6FQqtYXxtPdE+OjRo0Jqqd4qc5aNFl2FoTVCz2hz94OH/2z5LYa4MPS6sN13Vl73qY8N+/HR0LcxEODaBXk7hebRDfF8iTkEC4Jz4Z4WENSqCjlg4iN0VwJ2b8QPGoK1tbXe3t5du3YNCwvbt2/fuNkTCkKzRY4pepLrPNKZQmnpLIv2ngj3/G+f0kAN4RKEjihYqNy6dYuskJqidzTRXH6g6u75upgQsmOReQgFTDVC3kymbbJGdsRjNkEC/wwMbZIPORxORESE9NwPQVAbQDQETdVA7ARaT/Y3s1d1dfX+/fuNjIwiIyNDQkLOXbsQwo84nHZKrgEvepCNNggAAADHK5JKKkJzSnNyWh5Yu06EHA7n3bt0RT3RVV3kbVQvXPUnJaRvoWnraS7bW33/Yl3UPbJjaQsQCnDWR2In0A7ZU33fYtZBAv+Mz3s8ZWVlua1ab9jdftbBAD0L2w3bvAoKCsiOF4JkWxEHTHyE7mxGQ/D27dvGxsYZGRnR0dGX/r70CktecHdVByVthWtV/7MxHpfLz/0tMv9YQuamZ10e5V91so6NfsHn81sYXrtedFteXt7YyLj+Y41Cpy8WdOckV02fvJSsqL6FptVJc8WBUt9NuICvNHA82eG0EcM6UoZ1pEUU4n8koF7x2ApT9ODUCUVO2/ENOwFCA/yGw3GB/4yZ9C4hmuxIIUhWBWZjK6PQeV2RgKG0Hw6Ksbe3j4+P19fXj8p/ue3OfkNVveODdrI+5hYpIu8+1q7qYbjCxiDuU6W5jakSg/axhtOxYyc6nd7CCNt1ixAA4Ll6Y23kF5v/4QKsNrFyyqTJZIX0HTR2B82VB2uf/VMdAtfjFqf+OpRHo2j+g6iXrt0o6joG7zEBIDQAAKAzBX3mlKsYR0fDRAhBP62IAyaFojsTsLvfbghmZ2eXlJQ0/qitrQ3UqBuf/OEbe3qJfPe1qfWUQ+vrXjyYO3PG9ewqHACEQumty1Ji0AAAl9LLlqxZ1/I423siHDN6jFI5s+BURtXbMpSLFj3NS98bv2LJcjk5ObJD+zoqS0tz1SFO/NOq4LNkx9LW9NehCMJP4wMXiZSX9XXb+T9fUkKCINl1KROzDuJ3VwdxE2i2X3simJ6ePm/ePDs7u/j4eKKkpq7CN+zAyjurzRLf7n/D616JKfUb3eGPS5rL9uqOnjl4xKjlT9+/zK8AAOTXNByM+xhezJkojkZLu+4aBQBQqdTYiJexsbH7Du+PC4wbN3X8e8/C1XNWkx3X91BVWJor9pf4bgYAqDovIDucNqW2tg7IKYqWKrDKKyrJCAeCZFIhByyJQLNr8Psjvz474s2bNwcOHAgJCVmyZMm7d++UMW5N5L2QzBB/kN0dVT6m76w1oC9Dr4vIu46ePBMTE3Ps0IHNN6J0dDosWbP54JSpLe8XBXCH+qa2PdvbXdPcxXyC5KISC6y+tvTEVoZ+V7XJy4DQ6OF2uIe1GB31PbEpvLx++AbhQsqVVePGjvVbOkZbnqy4ZBv8OykuMlGTgdnYqih0blfkj55UuSYT/BITE3fv3v3s2bMl7u7LJ49m5KRw3yWkNxT6G9CYCmor+63oqvPjjQa5XK54O+3ae9doUwutZ11JvVHPl/at7RAFJfbS3byPGRWBR0GbvptpTfNdZyvGXwWF6f8VfXilXfBC396p2w2+xwu0oB5WNQR9XREHTA5Fd8RjwSNo+3p/JQuiKOqxYnk/k04J+zzc+Cn4o0vlGOeElbq3hfKUfouPTPJtThYEAIj90RVMhKKMVPV76lgHpd8hO5AfQ+SVNJftE5TkVwQchrlQLJSUlK6c+J/dE0/t46Pojw5pHB40KOnw7YunjjjQ30ymy9OA5XWBewSaB7c8hKAvEXMEu6iCVxNovUSeCOI4Ly+jJuxamc/Gy/00Zxsrq3S1Vt9w7NkYpzWCaG1N44vOviOMHSmglXYfbAp2jX7Fx5qCZQ83Xh53QpmhJKHAxAjncUtPe1GVVNRnbwQIVSY6T6Tf+/fvb976Z+aM6R06dBAuL2kAx1JR31RsZCdkWw+kqypp/3RlCPw7KS7SWZPFHLAsCk2rxM8PogqnQLSu+p8zxx89vL/dVpdCl2Na2sl368MwsaJQaVH5L4+8OmWkqr+ql1sHJW0SgyfAFuFXdFLWdehkF5j2D9mBNAuFIcd224HzuGX++3AUroQiHsbGxm6LF4lkQQCAJhN49aRmTqNbsigOwQKXMPRtZVu+lYSgRhkZGWNGj9ZUUbK1sXnw4AFRGJiNWQfxO6uAuH8bgoKyT9VPbp5dPNHaWN/rz//172Ovteawzm/n1CYtlevaI6+uaMMTr+Px59faLd07+DdpyIIAtgi/paiueNG9Nf7OviymqiQCEzscFZRf2IMLBIwpHirqGj9+A/QjP7z7ruWDM+nYgSSsJxv83pMq2h0E/Us62zGyiMSaHDtqTHLM8wU2BlNNtV/klx+Nz6sEjF4XctMq8XMDqb3U+LzsFM6b6LqkqHtpeX9GpMkrq2z57fepM2Y2LgRaw6u9knLj/vuw2ZZTJ5qOplJaulK2GMEW4ddpK2o5Gg4IeHuT7ECai0Klaczbisgr1f99EOfzyA6nXSD2eHrnQhumi0x8hA6/L4gubsu3lVC7VVpaGhcV/mxO34XdO6rI0UYYa92ZYmsiTwH3D0Vqhxjd8irY6lJ1/9KzzPyB559dKaL4Xrj8+u07l5mziCyI4fjD949d7ywv5ZSfH3t0ipmzVGVBAFuE31HGqZh3Z8W5MUfYCrLTwMKwoosHkJoy9uIdFDk42L9Ffurum4eBq1nYzgRMWx54WiPO+vAW8z+wRSguZNWk6xxXtazYjXYGwoVxnyrPJOad27RM3tKeadUXYSqmpqZWVFQ4ODgIH5Za+u7Iq5NyVMbKXos7s4xaN/Dmgonwe47FnxVgAo9ebuKNSqJqqqsFd88ISvLZ7jthLmyJX/jS4WPgUia2NxHTkQdbbagjOsHOUgBgIhQfUmoSB8BAR/uCU5cu6qKDB7ufCs8tKlFS+vqgwtL6Mr/X/glFyYutZzsZDyFxUOgPwfvW75ltOSX0Q/in2iKyA/kZFApr+mp6J5MSn41YfQ3Z0bQvdATM74qkTaFt6I5seYUSezzBPQ8hmVNQjwfnYl7xqHOIQOsSv7LLsNtZpcIHVHMFmx6nVHP5z58/b/p2Lsq7knpj0f3VbHl10qdGNEdbSIQ4jmdkZGRkZIj9zKpyKuO6jLyUEij2M0sWhaI2cYmciVWJ7yasrprsaNodYo+nVxNoO3shx1I/7/HUdMtDCJIeVTwQUYh7v8FcwtAOl/mW1wVHUjAAgJsZ8mZ4dbKr6YN3BSiOAwDKOby/ojMHXnj+OKd869atTfvbovJfzr2zPLk49fiIP917zJWnMUn4PD9J5rtG8/Pzp0yZYmhoKBAIFi5cOHLkSOFXW9g1CgCo5dXNur3kqNM+fZWOLQ62NQh3nlTfv1j/+rnm8n1UFXVyo5JF4uqGiijEf49HP9QAT2tkfleE3hZuPn8O7BoVFzHWZA0fJJbhcaWf/8uvx7uxKLbsz/9ZsigAAJzPq312q+ZJkKK90wzvKynxL7uoycd/qrDQVKkSgGqcnvPpk/A5c6s/Ho07XVhbvLLXIrsOPcUSZ+uQ+UQ4a9asSZMmTZ789QXIW54IAQAXkgM+1uRv7be2JSdpNSL/VGrCrtXFhGgu309VlZ0hP9JBvF/fEYX4/iT0TQVYbYm4myNM6Ro0J1kwEYpLS2qSj4F3VXhkER5RiMeV4nl1eHf1/zKfuRoF+bLzsiElujLoBE3HQG3yMpq6No/HMzIyolGpNeWlegZGf+zePWHCfwsy1/BqzyX9Hfbh2ZxuLtI2NaI5ZH73ibCwsOHDh0+dOrVnz57r1q1jMBhiv4SL+fiZt92zKj+YqBmK/eSSpjzUBVCQkiPr2Mv20TR0yA6n/eqvQ+mvQ0sow/e+xvYl8ld3o660RBRk/t8f1Erq6+v9L/99/PyViaOdlrst0NTU/OFbBBhIr/qvzfe6DDdQ+pz23MwQOy3Kt/bIFRTlVd48IagoVpu6kmlmSxQyGIy3b99eD7p+4tzJkUNH9O3blyjHcPxR9pPjCed7d+hxwdlHTU42Jl6LkKVuGgzDPn369OnTp7q6OqKEw+GUlJRkZ2cfO3YsOzt77969kriuPI3pYjbePzlAEidvBcqOU5Qdp5Ye8xSUFpAdS3vXQ4NybSj14ShaSgVuHMD3ikcr4ZxP6EcOHjluaN1nXUh+0ljfPRkqloPGuC5Z9dUj39fg/hmYxwu0f7CAdZHvEoaG5uPGypR9vamlc+gpU2j+g6ke3ZD+Ol/Pglh9bWXQ8eKj65nmvcvGrvJ/Ftf40jE/X8te3Q4+OALGK97Iv9t7qP2s+bNeF79ZfH/1vazQQ0N3bO23RkazIJCtrtGqqqqFCxcCAObNmzd27FiiUFlZOSMjQ0dHJzY2dtOmTWFhYcJvEUvXKACAh/Jm3l6yd/C2LizjFp5K0r7VeVL34n71g0vspXvpOvqtH5UsknSHXmolvu81djcPW2yGbOxOVZfSraDFAHaNtkR9fb2RTd/idS8A9b+N99inJjw9e8DS0rKg/r82X1QRLkcFRJuvvzbSV5ui2PwuBxyvfxVWdfuMnFnPbMM+e/46HBUVtWHDhrVr1wIAuFxu5+5dDTdbCT/izjiaaDHVZsNEDymfGtEcUtQi9PT0dHR0NDExiYmJIUr4fP6iRYtUVVU1NDT++OMPVVXV69evX79+vTELAgCGDRuWkpICAEhNTTUwMPj6qVuMQWXMsJh0NvGyhM7fChT7jlIdt6j0+Gb+pw9kxwIBAICFGsV/MPXVBBpHAEwD+R4v0E/1/70aExPjPGOehl7nKa6LExISyAsTItnFy3/X2UwWzoIAgNI+7iM2+2pf5ve6JTiZ9nl4Z/pUesFMerATzasndVjHn8iC3Mzkoj+X18WEZNpNmXv12dgpLnZ2dllZWUQWBABcC7ymZM0SGeilObQjK1FO+qdGNIcUPaNgMBgrVqxYvHgxh/N5L0AfH5/ExMS8vLyqqioHBwc7O7umbbtDhw7Nnz9/z549fD7/0qVLkgtvXOcRAW9vpZSmWbLNJHcViVKwHQIQpOTYJrbbDoZ+V7LDgQAAwEiZ4t2Xus4KOZCEdbvBd+2CrLdCZrtMTq5hlPV1B9tP3kh7Er5iV59OisEB/mQHC5HA72JA3aijoqXdRlTfWJd+ldZBoUVJCK0qq7pzlpuR+M6gz45LN7Ozr3t6el6/fl1kw7/TF88oObJE3qtmzn526TmGYQgiRQ2qXyN1XaM6OjpXr14dPHgwAKB79+6bN2+eMWMGAMDLyys1NfXatWtffRefz6fT6U3LBw4ciOO4js5/g0SYTKafn9+vxfbgQ1j4xxd7+2/7tbe3jtra2m8t9EDgp72qC/JVmrOJpgdz4ff8sCbFrpBD8X5LOf88jXdje8OSG8IvsY85hV8+Zmho2JrxiEvr12RbsvfP/x3IUuMN+HJ9q+yXQ1OO3L5y7pdPi/N53Bd3Oc9vy9k6yg+Z8iTyRWFhoYuLC432ldaRt88R/5QALSc94cK63GrlcMrdoLu/HEPrYDKZP0zVUtQibCozM7Nbt27En7t16/bPP9/cF+mrWRAAwGAwevXqZW1tLXwkk/mLEzzHmY66mXUvrTrTRqvbr52hFfD5/O9/QKZNfwaTWXlpP2veVoaRRasFJnN+WJNiZ8gE/+sHck+duDXAXeSlcnu3o6cuHDskkeFgktb6NdmWWE90E4wbCb5MhOovTv72+7JfrlVuakxl0AmatoHmmsM0dW0AwOjRo79z/MCJQ/YdP6A1XE+4E7TmWenutYek/zfbnAar9CbC+vp6DofTeCOprKxcVlb2syeh0+mDBg1q+WAZAgKQOd2mnU267OO0XywnlAQEQX74i5e3sEPmbi4/v1t9jqdcV5vWCUzmNKcmJSEmKgKsPSBSiJkNeXj2LxntgyKrJmVdDR9siEEf5rOGDewf7zeurO8S3Gok+PBK48VJA37+oEGDfuGcgqK8shvHbzyLPhaXc+SE61C26I6bIrgo73zS3yEfnjo5DX/lHac0UINlo1WXU13zrFSphuk03KlxlyWZJr1/OxUUFBQVFauqqogfKysrtbS0yA0JADDMcFA9nxNTEPfjQ6WbXOfu6vO3ll/c35Am85+ljZnhMpkWHyRSiMQGOE2YRko8ECmeF+I9bwrqBSBpEu3hBe9n/n/N5oWp77AcnuoT5LUw7nnoz54Qq68tCfTxdZsyYJ//lY+8fX8ddnR0/P5bkkveLrznUVBbeG7MkUC/gIeX7/XlWr/b9oodK++32Scu6lXbyIJAmluEAAAzM7PExEQbGxsAQFJSkqmpKdkRAYRCcbWadibxsp1uT1kfKyVn3E1j8R9lp39Xm7pS3qof2eFAn61Zuth/1PRSu5mg8VsGxxRjL4Y43u0fLCAGBJIaICRZ9QKwIwG9lImfcKCO1f/8uzY3N/c/caSmZvevTETB8coXD/33/3E4JkPXqMuhY8ednZ2//47PDcHsJ2vslvbvZE8Udu3a9aTPyZM+P3196SdFLcLU1NS4uDg+n//u3bu4uLiGhoZFixYdPHjw48ePycnJZ86cWbx4MdkxAgDAIP1+FAolIi+a7EDEgKHfle22szLQh5MYQZTw+fzk5GRyo2rnOnXqNHOMo+ahPnJPjoKS9/KhhzQP2q9ynZo+X9vNDFkRhfYPFgTnwj0t2qaIQtw6SPC+GiRPojVmwZbgZiZ/2OtuNXZaCEfx6u17ES9e/DALvilJ+9wQHHu0MQu2bVI0anTGjBnCO0hcv35dX19/69atly5dkpOTW7NmzfLly3/2nOKaUC8iKj/2ZMKFs2OOItLXM/Aru+jlZ5X6bau1H+f/LOFmYICeEqNEgCxctnL23LnteR40udPAKysrT5698Petu/OmTVzgOrsxEgwHd/Mwr3gMw8EWG2SKESJ1fwWbgBPqm6OxIXjc4ZsbO/9UTTZOjVAdM6+8g1mnTp1++JbGhuDq3ksG6PX5iehlnBQlQkmQUCIEACx7uHGy6dihhgPFfuYW+rUvnZqcDFtb25W9jcd01mJQkXIO7+q7knhc7cHTr2w21k5I89c3DsCdXGxXAlYvABu6I7M6I1QpzofSXJNSIqIQX/ActVGn+PWnsr69xlAza7KsqDD60vEeFWmK9iNUnGY0c4PuNyVp+6O9jdUM19ktU5FrX78vKeoalS0LrWedTbqC4ijZgYjH9bDn4y0NJprqMKgIAEBdnrHMumNDcYEkdnmEWo4CgLM+EjOedtyBeiED63pNcDIN42NkhwX9vHoB2BSLTn+C/mmHXBv6vSzYHEVFResWzulibHg/5JHW2iOqzguakwW5KM8v4cLvz/e52cz9Y4Bne8uCACbCX2arY62poBHy/gnZgYjHSe+/pnUR3adppomq39HDpMQDNVN/HUrYaNqFQdTgXKzLNYH3G4wjIDsmqNkii3Cbm4L31SBpEm2cQYu+jYuKijauXGZqZFj85tXLu0E+D6OICYI/lFKatujz0NCj7ao7VBhMhL9ukfWcc8lX+Sif7EBaCsOw6upqNaboogS6inK52dmkhAT9lP46lGAn2s3h1Mgi3CiA7xWPVsv838o2jiMAm2LRaY8/NwRbsuT6hw8fVi1fZtm1c3lMaOzFYxdfpHQe/L3Z8Y2IhuD2Z/vcbFzbZ0OwEUyEv66bppmhqt7drEdkB9JSCIJMnTnrTlapSPnlrMpl6zaSEhL0C4g9nh6Nor2vBl2vwT2epNcvNwSzs7Mx7MsecBy/e+oILflZ9IH1Jx/Hdpm8ADRv7YKU0rRF91b/2xDs+1Pxtz1SPY9Q+i20nrXl6a6RxkOZNNneRMdt+UrnAZcH67HYCp93Nk4rrXlbXPlrq1dAJLJSp/gPpmZVIweSMJMA/uzOyBYbqnazRktAEscRgD8S0IsZuK8DMr7ZKZDD4fx95fKpI4flePUVAjBr/sIFbu5sNpubmVwZ5OvSQVntajBd16iZZ+OhvHNJf4dkP/Ho7T6w3adAAtXLy+uHB+E4XllZSaFQvroeqzS7fPmyvb19ly5dJHR+trx6csnbyoZKS01p2ZKCx+OJrBzfHMrKykrq7N+uhUQVVFXU1OyNL3jFV9o6uLtmfRHTvDeQvlkireDXalJKqMtRnPWRacZIdDG+NBLNrwPWGhRlOjm/R5muSTGKKsJHPUTlEMq9kbQeGj/xuxg7bAiS+HRTd8055tpGCpTDAbePnzw1XVNQH35TxWmm2kR3qrLo1hDfklqavuHJHzSEtm/IdlP1zr/0OdqgZt2SFBYWqqurh4eHSzoaWbTQetaV1Bv1fA7ZgbTUrDlzYpLebDh6RjDQ5cL9J/efvxhx4CzvY1ZF4FHQpufYtGGGyhTvvtQ3k+nyNNDthsD1KZpVDX+VJCCeCE4NQ/f//BPBrKwsflnh6h6dcqrq59+OXxfyZpqF7nAdhQcpOTqbTyn0HtbM8/BQnl/ChW3P9iy2mfPHAE9VOZVf+SRtVLMSoaqqKo1GYzAYko5GFhmp6vfUsQ5Kv0N2IOLRp0+fLb9tNzIyAgAgTEXNpXsEhbkVAYdhLpRd2vJgX29q+lS6sQroe1vg+hRNr4K/zdYTVYT3IJ4ITqZN+Pmhocf++tOORZ1585XHw+T++hrhc/svtDGYb6Pn/yyumRMEAQCppekL/30iCLtDm2rWb0VBQWHixIkS3fZWpi3oPvNa2j81vFqyAxE/ipw8e8kuQVlR+aWDAIPz1GSYJhN49aRmTqNbsij9gwXOIYKEMpgOJauxIbi3N3JtKFXjJ7uHsfraolfPzl64EJD80cWi4/N5AxbaGBAzfdnyjE+Fhc1ZDqWxIbjIejZsCH5Lc5/5OTs7r1271snJydnZWXifWwDA1KlTJRCYLOmkrNuvk11g2u0F3WeSHYv4URhMtvvO8vO7yy7sVXf1pFBl7DkxJEyFDjytkeUWyJl0zDkE7aEBtveg9tZsj8+AJe1FMT4/HO2uTkmaTGtmCsR5DbyPWfy8DN7HDH5eBlpZSutgtGr88I8ZaRNMv9gv6Z/MkhlzXH+4+UNq6bt90d5GqvrnxhyFKfA7mrvEmo6OTlFR0VdfkuZF2iS3xJqIorriRffX+I/1ZTFVJX2t75PQclY4Kii/sAcXCDTmb6PQ20UneZtfGIyLggsZ2K4ETF8J7LClOupKKh22+ZoU0YACr3j0Ygbu0w+ZaPjdXjcM5Rd/5Odl8PIyeHmZ/PwsoMYuZLLN+gxkGFvStfUBhYJhWA/Tzsf76+mrfu4IrWzgzw3NuBvxUqRNIowYGvow+/GqXm6D9R3E+wHbnube3cfExKBoG1lOTBK0FbUcDQYEvL25pMc8smORCAqVpjFvW/mVP8vO7tBYsL2d5MK2TY4K3MyQeV2Rq1nY0khUkwk8rb9Y7pnP518Punku4NY8l/FTJk2EowSaI7oYn/8MtWJREifR2E03b8cwfnHef5mv4D2NpUnX68Lo1IVq2ffm46gDfx4aNGjQ2bX/zYhHEOSw3+ktWzbJcQqddeUjSzjpNeiqzb99JwtmVmTvfeHdSbnD2TFH1ORIvjWXCT+36HZFRcXbt2/z8/O1tbUtLCzYbLbkIhOLVmsRyTuAfQAAIABJREFUAgDKOBXz7qw4N+YIW0F0rbLWJNm7bwwrv/o/tKyQ7baj+Q/qZVS7asdgOLjxAfs9DmNSwWYbZIoR8ucR30M+fvXmI2ssnZVT7yik3l+zzM1z9U/vAAPaSk1WVVWpqn4vqRANQf8MzKcfdZJQQxCtKuN/zODlZfLyMnjZKRQag67XRc7YkmFkyejUmcKQ43K5Fy5c2LVrl76+/o4dO761X25KSsqF0yfHTJj0ndm9Agy9lnbrRvqdlbaLYEOw+ZqbCFEU3bRp09GjR7lcLlFCpVLnzZt39OhReXnp/UJszUQIADgWf1aACTx6ubXO5b5K4l86OF554xgvP5vtvhNhKkjwQmRrG1/fP4XY42lHPMaprsjdObJmXThoXClCwNX0HpwWGaKurv6zp5XpmkRR9O6dO76HDnzKy1FmabivXusybXrTaZGNDUFfByqLK5T5PrylUGl0vS4MvS4Mvc4MQwtE8b9ndbW1tWfOnDl48GCPHj22b9/eu3fv7wfz/ZokGoJaChrr7VdoyDd3ZiEEmt816uXldejQoRkzZri4uOjq6hYXFwcHB585cwbH8TNnzkg0RBky23LK7OClLmbjOyg1a7lbmUShqE1eXnnLr/SYJ3vJbuF/1ZCsQyjAWR9x1kcW/ub/1s4VCK+XRJOr6uXqe+rcNs915AVIgvEjhuvWF23uom7Ss9un2oa/Tx88fGDfq+TUxoEqDSjYE1Mdm5x9WvO9WV4qb8+bIj6faPMp9RtFn776O7Pd9+7d++HDh4cPH1paWrYkSKIheO3trYXWs507j2jJqdqnZrUIBQIBm81etmzZnj17hMt9fHxWr15dUlLCYknp3UcrtwgBAKcSL1Y2VG2wX9FqVxTRSnffOF71z6mGjETNZXvbai6U6XZMCxl2s81xewAU1L4o5VTpn3DKSYn/2bPJbk1mZWUtHj/Cy7bDydSPjz6U2HVkLbPQu5JV4fr7nwPNDPl5GQWZGaVZ77R5ZcyORooGnRl6Xeh6Xeg6BhKK56s1mVX5YW/UYU0FjXX2y9nyP91eh0Az5xEWFxdXVVVNnz5dpHzGjBkoimZlZUkgMFk1w3zS87zo3Op8sgORMApFdYIb06J3ic9GtKaC7GggMetnb0/Jfila+v5lH3t7MsIhje//DvH5ta6x6YkDNE0PDckdo7c8/UNKScn/Vi+uDD77NLVwb32PSpftJgdvdFxzSG3SUoXew76TBQsKCtatW5ef/4tfDg0NDffv3y8vL28sEWDoldQb68J+G9911N7Bv8Es+MualQiVlZURBMnJyREpJ0q+/wC5vVFiKE42db745hrZgbQG1THz5G0GlvhsRKvKyI4FEqdt61ZoRJ8UKaQ+85viupiUeMjyIiois4FrsLWPuq0OhUpRs2Drre1VyWIkV6NDOu7377r4wOJho230frgYb05OzrJly6ysrAAAv7Dsak5Ozqp1HqbWZr/577DqZz1l9tT4+Pisyg9LHqxLKk45Pdobdoe2UHMT4YABA1auXPnq1avGwvT09EWLFpmamnbuDFdu/cJUs3GxnxI+VOWRHUhrUBkxU9F+RIn3WkHZJ7JjgcTGwsLCRJ6ndn0VyE8BAICCVLXrHvoMzrKPVt5vMOmdOCxuWoaGqsNFW3jKIw0rVNk7bJFrQ6maTSdIfCk7O9vDw6NXr150Oj0lJeXQoUO/MNh+7GTnMH6UwdZuOjOMO//WI8OwwGnyyNX3ts6wmLRv8HbYEGy55g6WOX78uKOjY+/evU1MTDp06FBSUpKRkaGsrHzv3r0frm7Q3ijQ5adbTDyXdOWPAZ5kx9IalB2nIHLypcc2sZftpbF1yQ4HEo+o0LsPQ0J2/rU9LSPTtLPJb2uXjRwxIqeOMvspei8POzeIqqvQxv/hN6REp8VHqa3vKVKuaqqBVydfS3S7kYQoM5QQCqJAl6chNHkak0FlyFEZ8jQmDaHh9ejFPedSYt6MnTPu3JNLqqoq+aCouLhMjibHpMrRqXR5mjwNoSrSFZHvfoUmJCQ0KPF17Q0bS9TMNer6VA4s7THUcKAkPng79BPzCEtLS0+ePBkREVFcXKyurt6nTx93d/eOHTtKNL4Wav3BMoQGAXfWbfd9Q7Z3YRm38qXJGphQ9+J+9YNL7KV7JDdSoJXJ7hAP8WpoaGAy/2v48DHwRzx69h3m158qPPv+O2SuJvkfsyqDjmO8hok3owoNeXqjv/hXXBZXWHjrU0pyHIpjNbxaDMfq+RwBJuAIGngoj4vyOIIGASao5dY9uRZqNbIHnUmv5dWhOFbPr+djAq6A24By+SifI+AIMLSOX4fjQImhiFAQRbpCY0JlUOlEQv1nbyDeU07N/IvZyfxqXrlfTtrrt61bMW1Ws1qEVVVVixcvXr169ZYtWyQdUNvApMnNspx6JvHSvsHbyY6llSj2HUVhMEuPb2Ev2U3vYEh2OJDYCGdBAAAdAbt6UUd2QlzD0bu5+KE+VMU2tPosVl9T/eBSfXx43ZDRNxQqKPLvCw/E6o0yEn4KmPOoTJ3J1lbUavr22tpaJSWlxh/derg256I4wGt5dRiO1fHrGxMqD+UTCfUR9Q6HJtpcoSAUFC6CLz7NuqHj8XiBgYFUKlXS0bQlzl1GfKjKSylNIzuQ1qNgO0RtgnvJsU283HdkxwJJVn8dyutJNByA7jcEUUVt4qEhhtZF3Sva51aEcy6P7rum/AGLqTZDd7mAaRizLTHvfh63ouHT04LY35MEqPrmNaLzox4/fuzo6Lh48a8MJqIAijJDSVVORVdJR1+lk6l6ZytNC1sd6/6d7AfrO/y5eX/d83KRt5RHFi5fvPQXPynURLMSIZvNNjY2TkpKknQ0bQkdoc22nHIm8TLZgbQq+R4D1WesKTv1O+9DO7oDaJ9U6MCvP/WAHTIpVOAVj6KynA25Ga+LDi7PTgq9OMTaEySwlbSOjzyV2jB7Z91wZYBxx/4vB5sVf6TofdkIjvMxFX6D66wZje8NDQ3t16+fm5vb9OnTL168KPbY+vXrRy0HFUkl4N8arv1QVf2idMHcBWK/VrvVrERIoVBOnDixe/fu27dvCwQCScfUZow2GV5SX5pQlEx2IK2KaWnPmrm29NR2bkYi2bFAEjfZCHk9if6yBO8fLMislr1kiFaWlF8+mBz0Pz9L1jbNUk0Ng/NjTvAZ0+xuMxpQkDqV8SzIf3L1A434K3RLZ/V3T4Zm+9/yP6mgoIDjeHBwsJ2d3dq1a5csWZKenu7m5kajSaSb+ObfQd1LO7/f9frTzewPB5LVo+Wunr2iotI2F7IgRXMHy5iamubk5HC5XBqNJvLcW3iCp7Qha7BMo5Dsp7cz7vs47W+1K0rJwARuZnL5hT3qczbKde1Bdiy/SEpqUibgABx5g+1+je7qRXUzE729ls6axHncmseBb1/+c99C5zWlcnyX0S7m41+Wynu8QDWZwLsvtRvrv+eClZWVd+/eHTp0aOOeDx4eHjExMVu3bh07dmzrjJyvrq6+fv36yJEjdXXh2Gwxa+79y7hx46qrqyUaSps0zHDQ1dSglwXxdrqig7DbNrnOVurzt5af282atZ5pZkt2OJBkUQDw6IYM60iZ/RQNycf9+v/0buytrCElOinY505HRpK53Piu/TaYjy/nyS+NxMIL0Z22iGsX0VyupqY2a9Ys4ZLdu3cLj4tpBSoqKlOnTpXCW4o2oFmJEEXRCRMmGBgYdOrUSdIBtTEIheJqNe104qXeuj0ooI3PuxIhZ9xNw+2PslO/q01dKW/Vj+xwIImzZFFejKN5xaPd/8/efcdT+f5/AL/OdOy9s8me0VBJW0IThaZC2hoqlUpLaNptlYbS0E47VMqISplZOfbBMY4zfn+cfr4+kg6d4z6H6/n4/NG5zu0+r3N/Du9z3/c1blBPjcVMU+LGD3x7aX7mnSNx+OocdbSzwfRtQ+3ogO/QJ1roZ+oqfXT0WCyhu06Bra2t586dW7BggaCgILOln6sgxFEs3SMkEoljxowpLCzkdJoBaZyyJZ1Bf1PyFukgCMArDZXyCKiPC23JfI10Fqg/EDDgoAXm/DiMxxva2hRaGzct5k1vbky/HuiXsDFAvMp41Nxrc8656M15Uo7Tv0H9UgfSZmF3mWF+r4JkMvnw4cMaGhoPHjyor69HIjjEcSydEUpKSvLz85PJZE6nGZBQALXU2DU6/fzoISN7nkJiQMIN0ZTyPlgduY1BaROwmIR0HKg/TFJEZc3BeifRht2iXhqPUcchHYhOy3p16WLOzXwRvPMYtwA9ez4MPr2GsTaFSqaCC+MwY+S6+cVsbGw8c+bMoUOHzMzM7ty5M2wYvMI/YLF0RsjHx7d8+fKjR4+2t7dzOtCAZKloIYATeP5jkJ4V4eSUpVccIN07T373COksUD8Rw4PY8ZjNRujJ96lHvmIRnJ80PS3B5+z8XSW3zcxmxjpfcDScQ6bi16bQbB5S56ii38/A/l4FGxoadu7cqa6unpaW9vTp04SEBFgFBzZWO8uoqaldu3ZNW1vbxsZGUVGxcy9hX99BMaPmP3I3dj38PsJaZTQGNRjnJcDKKkmvPFgVvpXR1ipkNQPpOFA/WaiFtpJDuT6jv35IPWeFURTs1ysimYUpF5KjCqmkuarWgdbeOAyOSgfROXT/jzQndfR3R5wovvsfZDAY9fX179+/V1NT68/AEFJYHT4hJydHJBK7fYr12Ur7H+LDJzpbl+g3VW38NA3OXh7kzq7qTLTayqpwX6Ex9kLWs5HO8nfcfCR5Sx2pMbpIMCSLdmwUZr4GS1eh/tGn8swLSRGFTT9nipk4TduMJwgCAJ6VM9a97WZoBA+Bn0kOYfWMsKKigqM5BgN3Y7eApJBJatY49ACanLE3MBIy0qsOVYVtobe1ikx1QToO1E+waOBrjJ6ggHJ7QXtQwggbjRHm2F3DrMrPp5Mjy0glc1Aq+2ZE4iXkAQAlZIZfKj2lkrHfAu2o1rUS5+fnHzx4EIPBREZGcioWxN168e2MRqMlJiYeOXJk//79zJavX7+WlAyKVffYwlBaV1VU6X7+E6SDIAkjJi29Jrgl4xUp4QzSWaB+ZSGNypiFFecDRvHU1xXsv4yUVfVl7T2fgIc7LcobY6wC5i08hpeQb6aCXWk003iqugjImoPtUgXz8/M9PT2HDx8uKSnZ8WcNGoRYPTUhEom2trZpaWlYLFZWVpa5DEV0dHRqauqbN284mXBAcTd23fZi71S1CQQsd4835iSMsLj0yoNVEdsAgy7qsAzpOFD/4ceCY6MwNkMYLs9prpqogGEYHDsulH6syDyVfr6xrsK+jDJtuJvI2BkAjQYAJBTT16TQLaRQabOwykL/uRaalZUVFBT0+PFjLy+v/Px8MTExNuSAeBarH8Ply5fX1dUlJyc/fvy4o9HZ2TklJQXOOMM6bQlNXSntO7kPkA6CMLSQmPTKQ215WfVxoYCL7zFDnDBNCfVxJvZzHWN0AvU7iaX/+wUFBd32RfhYken1cMOxl4ets34cJ4xxXH1eZNwsgEan1zCs7lJ3pdEvjMNcm4jpUgV9fX2nTZtmZmZWUFCwa9cuWAUhlgohmUy+f//+sWPHRo0ahUb/70e0tLTodDq8Otor7sausV9uNLe3IB0EYWgBISnv/ZSy/Lq4E7AWDjYy/ODOFOwybfToBOqx7D+uq0cmkyOiInRM9SY6TdEy0j5y/AiJRGI+9bEi0/PhhuMpoRNyq4Jq5GcvPCwx2xtNEKxtAz0PjQAAMM8C161bJyAgwKl3CPEUlgohiUSi0Wiamppd2ul0OgCgra2N/bkGLjVRZTM54/hvd5EOgjw0QVDa+wC1qrz24iFA56Y5SCDOQwHgoYN+ZYeNyaPPTqRVt3azzegJY46/jJLwUFJerye7WuPkxxjz0RZJpe88HvqEvou0qwQHP9Psxy6X9T6Ik1NhDo3Qv94OAPjuiFtrgMb8fxF8/vw5vdMytmpqanx8g/feBPQ7VtcjFBAQ+PDhQ5f2p0+fYjAYDQ0NDgQbyJYauVzLud1IaUI6CPJQeILU8t30JlLtBVgLByNdMdRbB6yRBDCKb79b/J8LAxkZGSRsk8x0ZZwIHwAAK4iTnqLULNu+9/zBWRSZvak142RM5Xwj+U3GAgCelTNMb1KvFdCf2GKPjcIwBwgyGIzbt28PHz58zZo15eXlSLw/iDewVAjxePy8efN8fX1fvnzZseDI48ePfXx8Zs+eLSoqysmEA9AQYQXLIcPjcm4jHYQroPB8kst3M6iU6tMBDGo7g8F49uzZFp91GRkZSEeD+gMODXaZYa5PxK57S/N8Q2v+/wVP94ccFLGW7rKx/CSVxssfhtfS5DaEiti4oXD4EjJj4Qua5xvaTjN0oi2WOUCQTqcnJCRYWFj4+/uvWrUqIyMDLhgA9YDVzjJHjhxRV1e3tra2tbWtrKyUlJScOnWqpKRkaGgoR/MNVIsN5938fp/UBvsZAQAACouTWOyHwmBC3Web6Wid2bpKJeeF34I5Y0yNHj96iHQ6qD9YyqI+zsQ2U4H5LWpaNQMAkJb2kV9WsMtmfJL8eQ0UycV+GHGZbodG0On0uLg4fX39gwcP+vv7p6enL1y4EIMZjNM5QaxjdfiEiIjIy5cv4+PjHz16VFFRIS4uPm7cODc3NwKBwNF8A5WcoMwElbGXv8R7mS5GOgtXQGGwlKlLzu48fsneWIQPCwCwHypX1ti6zNsr43s+/EM2GIjiwQVrTFwhfdoj6gpdtAABW/nsh5KjTudtql8UC6Bx4M9DI4qLi0+dOhUREWFtbd3P+SHe1YspTjAYjKOjo6OjI+fSDCoLDZwX3101V9teSkAS6SxcIToiws1wCLMKMikKE0bJCt5NSJgxcyaCwaD+5KiGHipct+Z5rPAy9dK9r2UnqeLFf33bbm+gkF6WqMhpjb1LbaaCi9aY0bJdO4Wqqqo+egTndod6Z5DO9cUNJPnFbTQmXvpyY625B9JZuMLVSxfuTNfu0jhfUzz42GFYCAeJVmrrjZyEy5+vT28Vlk5uOonjqwv60C5FwI+Sb/tABGVkTQL/ZzOPXaroVfpoDAo0NjaGh4ej0ehNmzYhnR3iYf0xAS70J276cxOLXv5s6n4288FGQV6+vLFrJ/q8umZtPX1E8kD9icag3fpwaf61BZ9exwZWy6/UcWoZPvdbE3qNoeoRLZUxH+qDlBW3m2l8rae7y1evNUCTGxsCAwPV1dXfvHkzaRJc5xL6J/CMEEmifCIOWjYXP8dtGrEK6SzI896w+fIRfz/z//SPuJRXFx2yHqlIUD+gtzSlJF+OLH0kQqHvlBlrOMUZK6UAADi6Ylet583NqRf5XyZYygt5vy5v0ZnUsDLiUuwiIXR7eHi4jY3NmzdvtLW7XkWAoN6ChRBh83Vnu9zxdNadpSyiiHQWhDnMmLHDd6Pi559zNKWF+bAVTa2XcohoSquaAOwpMxAxGG25GZmpN8+SPzUI8i3WtJs8aiHoNHGV5QiLvMbKJqdjTbMCb39/BTRHAz5BcNG7pqSgurr6w4cPysrKCMaHBpKeCmFNTU1RUdFfd4H42s1lZWWVlZUGBgY4HMcWd+EYIbzgHG27C9nX/CwH+3kPFot9k5p29lS0y6mTQmg6nSDkuc53p75aVeQ2yYVb+IaaIh0QYg8qsaQ5/eWPjw+vydK+CIFFY5bY6dqjUV1v02xZu+L+Qp8qo+kARwD6U5iNoqSiizeu29nZ9XtqaCDrqRDeuXNn6dKlf90FsgvzhoWFXb58ediwYampqQkJCZKSvNcD00l3pssdz4L6H+piKkhnQZi4uLjPJt/1GzcXFxerqPw6GgJi4jXn9ok7ruY3HoNsPOhf0FvJLWkvyalPSaSfD7RlnmjR7LRstho4CeD4u91eR0dHUwTVdmlZw4SNQF4HVBWIJEcPwbXCKgixXU+F0MbG5skTrl48j8Fg7N69Oz8/X1hYOCgoKCIiYvv27UiH6jV+LMFJZ8b5rCsTGaOevni2ZOFiVVVVpEMhCYVCdVRBAACfppGU596ak/70libBkTYIBoP6gsGg5n+q/Zzc+vkdeqjJc2PVK9WVY5W0zhv5S/CL9/BzWVlZylLCXx7dMaX9/FH2U1lRbtsar1kzA/stODR49FQI5eXl5eXlO7e0t7cXFRVxz7pLNBqNRqMJCgoCACQkJO7cuYN0oj4iJVUeCzx0SVUaq85/dvZ5ZckhIfuCRwwfgXQuboFX0pJeG1Id4UcnNwhPdEI6DsQSamVpc9qL5vdPGARBoRGTM4ebRn25qkCTOzppr1qPFz8yMzNDQkKePHni6ekZFRUlKira1NQkJCTUb8mhwYbVzjIkEsnT0/P69es0WteZkfvt0iidTv/x4wcAQFJSUkREBACAxWInTZq0efPm8ePHR0dH8/N3f42FyxUWFu47cVBvkwVOCA8AAOOUyMUNizwW52R8RToaF8FKykuvCa6O9KORasRmeQFUN8vrQNyA3trcmpVMTn1KrfjBbzJW0t3/bRsx5ts1TD5m66h1xjI9DYZJSko6ePDgp0+ffHx8oqKiOn6jYRWEOIrVQujt7f3o0aPDhw/fvXtXWlra1tb23r179+7dO3z4MEfzAQCoVCoajUaj0WQyeceOHQAAV1fXadOmMZ+9cOFCbGxsbm7usmXLXr9+zekwnHAk9KjoeJlfVRAAAICgsghJgpicnGxpaYlgMG6DEZGQXhVUfdK/NjZEYv56gIa9SbkJg9FW+KX5w9OWjNd4NT0hS1uC4ajipp9HPsV+rvq23MRtivp4FOjp60tWVtaiRYu2bNly48YNPB7fw5YQxF4oVs7nGAyGiIjIsWPHli5dumTJEgUFhX379gEA9u3bd+vWrdTUVLZEWbdu3fv374lE4qVLl0aOHAkAoFAoy5Ytu3XrFgqFWrFixYEDB1C/nQe0t7fjcDgKhTJjxgwfH5/Jkyd3fnbatGlr1qzpqJpciEqlquqoqe80RmH+02uO9K1W7bvMzSvxvd1hY2OjsLAw+wJyHQalrebsXoDGSC7ehsJx8M/lgD+S7EKrr2r++JycfB+FwwtYTBIcMRUtJFrdXHPmU2xyWeoCA6cJcmPERVlaBZ5Op3de+hvqAn4mOYSlz1xlZWVTU9OoUaMAAHg8vqnp10J6Hh4eHz58KCgoYEsUaWnp7du3k0iklpZfq7cfP378+/fvFRUVubm5V69e7fYW4IEDB8zMzEaOHDl16tQuVZAnYLFYERERKrm9S3t7dauWphYikbgcCs8ntXwXRlC4OsqP3kpGOs5ARiQS9+3ytzDQ3eu/k0jsOv8Ro53SkvG6KnwrMWgltaZCcskO2S3RwhOdWvnwpzMvLbm/Rowgeskhco62Hba7c3c6nX79+vX4+P981YNVEEIES2eELS0tgoKC79+/Nzc3371797t37+7fvw8AqKyslJWVTUtLMzVl2xgveXn52NjY8ePHAwAMDQ39/PzmzZsHAAgICEhPT+/ya/NXVlZWbW1tMjIyHS38/PxnzpxhV1q2OHn6ZPT78zK2/xkdXHQo6/G1h4qKvR5lP1i6FTAYrQ9j2vMyBRdtR4tIcOIVBsuR/IMdmze+fvxgnqb4FBWJxz9qr+bXjZ44dW/wYQAAtSyf8iGx/VMSZogmn8VkrK4FCoMFANAYtCfFLy/lXNeT0HY3cJXhl2LuqsuRpFKp169fDwkJERYW9vf3HzduHCJvkBcN8s9k3wgICPz1CxZL9wj5+fm1tLQyMjLMzc0nTpy4b9++M2fOmJqaBgYGCggIaGlx6sQlPz9fT0+P+W89Pb24uLje7gGPx48bN65zncbhcAICAmyLyA7uS9yDjgajxbASFnJoHJpCaqt+XqY1RLNvB5ZGo3HbG+QQgTkrmp7FNZ/2l/AMYE7KxV6D50j+rry8/O3Th7fsdJkP5+nIzdORc7z/qDThglj+exQWx28+UcLvFFrofxc804ifQtNOi/OJHrTeqSWu3nlvHUeyvb39ypUr+/fvl5aWDgwMhCMCe2swfyb7jJXLDKx2lvHx8amqqgIAjBkzxsnJyd3dHQCAw+FCQ0M59A2ltbW1paWlY+fCwsK1tbW93QkOh7O0tOTme4QAABERkfev3x0LP371wFWcBB9oZkiPU7x18GbfLhMxOxaxPSR3EpnkjOYXrAnzlfLYg1PUYO/OB9WR7OJkeNh8ja6D/Oari52Jiw8IPsqn/p+enzk1uRFpZ+vbSEuMXKyVR/++N+aRPHXqVEBAgJ6e3unTp8eMgXMj9MVg/kxyFKuF0NPTs+PfFy9e3LFjR2FhoYGBwZAhQzgTDBAIBCEhIRKJxHxYX18vKyvLoddC3JAhQ4L2H9q/e19eXp6uru76p9tf/kyZrsF7tzz7n9BoO4yASHXkdsml2/FqcJ0K9rh5/dq1SWpdGqdqyMx5lHeoUxUkkitPZV5KJ2YtMnSerjH592nSOuPj47tx44a5uTlHEkPQP2D1y8Xy5cu/ffvW8VBbW9vGxqa5udnJiYOjm/X09NLT05n/zsjI0NHR6Xl7XofD4XR1dQEAniaLznyKbaNRkE7EG/hNrSQWbqk+vaflUzLSWQYIWzv7FyV1XRqf/6iZbmfP/HcDpTEq/fyyB+sVhOQuOUTaa079vQpSKP/5AC9YsABWQYg7sVoIExISampqujTW1NRcv36dXVHevXuXmJhIoVDS0tISExPJZPLy5cuDgoLy8vJSU1NPnTrl4TFYFrDVkdTSlRx66/t9pIPwDD4tYynPgPrrJ8jv4OrkbOC9zic2h5hJJHk9zza58NrzeXYmkRSbX7981Zp2OvV6TsKCO96NlKYYu7AlRvP5MF0HsVRXV2/fvl1VVbW+vh6R/BDUK/+0DFNpaSkbJ7k+e/Zsfn6+mZnZw4cPHz58eOrUKXd397KyMhtusXNKAAAgAElEQVQbGwKBsH///kHVu8zDZOGaJ1vtNKcI4uC9cZbglYZKrzxUFelHJzcKT5iLdBxeRqcJv71V1Exe8qVQ3l5DX8esLKdmyd18/nZ8KZ64PSFQTVQ5bGrgEOFuOihVVlaGh4eHhYVNmzbt1atXYmIsDR+EIGT9pRDeu3fv/PnzAAASibRjx47OZY9MJiclJbGxOEVGRv7e6O/v7+/vz66X4CHKIoojFc2vfr251MgV6Sw8AyurJLPuSHWkH53cIGq3BE7D1geMtpaa8/uLahqwilK6a3/1GhXVlRTVlfwSnBrx4NS2WRu7nSatuLg4JCQkJibGyckpPT2dc70HIIjt/nJplEQiFRQUFBQU0Gi0srKygk6am5sXLlzYbfWC2GKJ4byb3+/XtZKQDsJLMKKS0quD2vKzai8fBvSu8+JCPaM11Fae2IgRlYoubRa06jo6U26CslAmptsq+P79ezMzMwEBgW/fvkVFRcEqCPEWlgbUAwBGjBgRERFhZmbG6UDsxf1TrPUs9OMpGoO+1rwXN0fhJEwAAAaltebsXhQWJ7Fwa5+nYRtsR7L9Z1H1yZ2Cw6eI2Lhp6GnK+wzF8P/nihGtlVoWnFP4tZuZpGg0WkNDg7h498sqDbYjyTnwSHIIq51l3r17p6end/HixU2bNs2fP3/9+vVnzpzpmGsN4pAFBk5Pi16VN1UgHYTHoPAEyWW7UFh8ddR2emsz0nF4QNv3jKqwLaJ2S9ETZj0qeKZoqVL1rqzLNrXviAvmuzH/nZaW1nmSYQwG86cqCEHcj9VCWF5ePmzYsAULFhw/fjwpKSkyMtLd3V1fXz8nJ4ej+QY5UT6RWUOnn8u6gnQQ3oPCYCUWbsEpalSH+dKbYN/FnjSnJlZcCsydNSeQ/M7plvuL4qSVniubk+tB58tFDAY5pdbbwzslJWX69OkzZswoLi5GLjIEsROrhdDLy6uioiIuLq6lpaW4uLilpeXRo0coFMrNzY2j+aB5erNSf6bn1RUiHYQHoVBiszz5TcZWHl1Prf6JdBpuRGfQXz84vv9jlLc+Pa7mg7m8SdysMwesdzhbzF7o6Faw91Plo5IWIrnyUUnB3kwr87HLly93cXGZMmVKbm7unDlzkI4PQezB0j3C5uZmUVHRmJiY+fPnd25/+fKltbV1YWGhqqoqpwL+G16/R8gUl3Mnnfhp/7jtrGwM7yL8rulNQuOTK1Kee3EKXWdL6cEAPpJ0BuNz9dfnRW8Svz+Wb0dNNJ07WXuqOKHrUIeGhoazMWdj4y6b6ptkpmfW1dVt27bNxcUFi+3dsKsBfCT7GTySHMLSB7q+vp5KpRoaGnZpNzIyAgBUVVVxbSEcGGYOtY3/dje7KsdAeoDPrcMhQmPs0fxCVeFbpdx3DPJp2ApJxY8Lnj8ufC6EExheTT3IGKrr5o/C83W7sYiIyNpVa9euWrt9+/Z169Y5OjrCiS6hAYmlQiglJSUgIPDo0SMDA4PO7cyroyoqKpzJBv2CQ2MXGjpHZZw/MfkA0ll4lcCw8Rhh8Zoze8VdfAi6FkjH6W9FpJLnP94kFr2k0qkTVMYGj9gkcDkcr6Qv7rgKdLdYYBd79+7th5AQhBSWCiEej1+0aNHWrVtramqcnZ3l5eWrqqoSEhL279/v4ODQebU/iEOmqo2/+uXmu/KPIxSGIZ2FV/ENNZFcvrvm1C7RmR4CZtZIx+kPRHLV65K3L4rfVJCrrJRGbRm1xlBajzlMgn/4FBGbbm7wt7e3X7x4MSoq6unTp4KCgv2fGYL6H6vX+kNCQmpqag4cOHDgwP9OSiZPnsxti9wOVGgU2t3YLSr9vIW8GRpOmNJXeOWhUisPVkdupzXUClvPRjoOpzS0Nb4sSX5U8OxHQ+lIBfMlRi6mskbMj03b94yamINis71+/ypAoVCuXLkSEBAgKyvr5+cHqyA0eLBaCPn5+a9evbp79+5Xr17V1dWJiIiMHDmSjQvTQ381Vmnk5S/xz3+8nqhqhXQWHoaTVZZZHVwVuY3eWC9qvxTpOOzURCEnlb57UZyUWfnZQt7URX/OcPlh2E5XPpvfPyElnJFcup1P/T/3OMhk8qlTp4KCgnR1dS9cuDBy5Mh+zw5BSGK1EG7atMnLy0tHR6fzWkgFBQWBgYFRUVGcyQZ15Wm66EDKUStlSxz6n2ZLH+QwEjIy645UR++ojwsVm7uS16ckpdAoHyoynv9ISilLNZTWtVYe7T9mEwFL6LJZ49Nr5OQH0qsOYWWVOre/fft25syZVlZW9+7dMzY27sfgEMQtWO0DduHCBSKR2KWRSCRGR0ezOxL0R8Yy+krCivfznyAdhOehBYSlVxyg1vysORvAaOfGdR9pNNrNmzedF867/+A+nU7/fQM6g/6xInNf8pFZ8YtiP98wktG7OvPUAesdU9UndK2CdFrdteMtmUky6490qYIAAAMDg+fPn1+7dg1WQWjQ+qfO0EQiEc6r1M88TRfFZF9rpbYhHYTnofj4JZfvBmhMdfRORlsL0nH+43j4CXU9ja3n/HOUiteH+Wroa54+d5r5FJ3ByKr6cvzDydnxi89+itWW0LxoHxE6JdBec2q3K3Yx2lqqT+6iN9ZJrzqEFhIDABCJxM6TwggJCTGXg4agQesvV9gSExPj4uIAAA0NDYcOHZKVle14qqWlJTEx0cJi0PVER5amuJqRtN6Nbwmu+nDJvX+FwmAlF26tux5aFeor5RmAFhJFOhEAANTU1ASFBqtuMUDjMQAAoCdFa6X6H9g9corlG+L7x4XPhfCC1spjwqceUhCS63lXNFJN9cmdeKWhzGESpaWlQUFBFy9ePHz48KJFi/rjzUAQL/hLISwuLk5MTAQAUCiU1NRUAuF/l1wEBATGjx+/Z88ezgaEfuNu7Or9aLO91lQRPJxj4p+h0eJOaxqfXqs8sUnaay9GHPmxQBHREcKWUr+qIAAAAAwBy2cqvChg2XIPjyOT9iqLsLTIUefVJIqKio4cORIbG+vi4pKVlaWg0M2auhA0aP2lEC5dunTp0qUAAG1t7QsXLgwfPrxfUkE9GSKsYKU06vLneE9T+KWePYQnOqFwfJVH10t57cPJqzIby8rKOncN6zdnYs4qbNTu0ihjNYR0qtQzgtX/4x3DJH6KKm3y9IyLi/Pw8MjJyem8tjYEQUysdj789u0bR3NAvbLYcN6S+2vm6NhL8XddPRXqGyGrGWhB4erwrfh5G64+SzkTEYqjtmGERD3WrneeN5+Pr/tJyNiLSqdlELNEVMTIxQ0iQ//zf5ZcSBpuMYLF/XQeJrFp9mxzc/OioiIREREORIaggQD2wudJUgKS0zUmx2Rd9Rm+AuksA4fAsAmAT2DExMkzdBTPWg0RJ+Aqmlovnwk+Hx35NOkt5163ldqaRvz0/EfS27IP8kKydq4zLp+51LUQvqndeNKHlb39GiaxOggrMwQAEB8fz5HQEDSAwELIq9z0HV3veM3VsWfxjhHEipfFtebKsl4mvw6pnBBhvekQ92f52dnZXSba/Xd1raT35R+Z4991JLUsFYd7mi5inuLfDb1JvFEkaiVDkBZoqSA3vKqUJUj/PQCddi/AJ/bB03OPXmJF4SVQCGIVLIS8Sggv6KjjcO7T5Z1jNiGdZeAICwlcN7RrCXFVF404GhJ26ixbXqKQVJxSlppc+v5HQ6mZrJG18ugdozcK4Pg7b5P65n18fPyh40F5VTlKCsoH1u5xcHDoebeP7ibsXr+S2Ni8bc9+lCBXdH+FIF4BCyEPc9Sd4XbH63tt/lAJDaSzDBA/fhQr6Wh2adSSEDybmfEvu6Uz6J+rc5JLU1+XvqXSqZaKw5cYuRjLGGD/sPIDDodzdnZ2dnZuaGj46729xMTE7Vu31pcUrHOyXxYcjcXj/yUqBA1CsBDyMD4M3lV/7qnMi4fG+yOdZYBwW+J+8+V1N73/jM+L/frTWUWmImAJQX84v8FIvIYhCsPSL04rtS2NmJlcmvqm9K0on4i18pgdozdoS3QttD3ouQp+/PjR3d0dTaet1JOcs+eo2LQFrO8ZgqAOsBDyNjvNqddybqcTs0xluy6bDPWBu6fX5NNRDhpSIny/fjWqmtueE9tCXjwFlcVt39NJDy62lxfwaRrx648g6I/AdHcrrr6N9K7sPzf/FhvOkxJg/007WVnZ3SuXmf94I97dahIQBLEIFkLehkVjlhq5RKWfj7AJQgHenjyaG0hJSa3b7u8aeFBfFDdOhnC/vPknFXvgyDE8Hx9Q0sIraQlPdKI3kdryPrV8fku6exYrKcc31JSgP4JPTa+cTEwuTX1R/Kbj5t/20Ru6nfaszygUSltbm7Dwr4kUxMu/Di9OkvhtNQkIgnoFxWAwkM7AQdOmTVuzZs20adOQDsJBdAbD48H6xUbzxwwZAQBobGzs+EMJ9Q2DwXj27Flc7MWlnit6mkSCTm8p/JKZ9SCFmPke19iOx5uLaY3VtxmhMvpPN//6rKWl5eTJk0FBQf7+/suWLQMMRsOjS82pT6U8A5jDJLgZ/EyyCzySHALPCHkeGoVyN3YLTzszStEcg2Lz399BqL29/datW4HHg8p+luWUFfmu2zx1ylQ0+j/T07fRKB8rMpJLU9+UvhPlE7YeNX2HiIZyeVXb94y26OO1UnEE/REE/RF4Ja1/z9PU1HT69OmgoCBTU9P4+HgLCwtAp9VdD2svzZdZf4Q5jzYEQf8CFsKBYJSi+ZWvN58UvrRRn4B0Fp5nNmpYuxIQnS0zVEauqbRx3fFNSicOJ957AgAgtTW8LfuQXJaa+jNdXUzFWnnMIkNnaQGpXz+pCoQspzPaKZTCz63f0msvBAJqO5/OMMJQU4KuOYqPv6dX7U5jY2N4eHhwcPDIkSPv3LljZmYGAGC0tdSc24/C4qRXHULh+2O+Gwga8GAhHCA8TRbtenNoospYpIPwthcvXlAk6XJz1ZkPBYcIC7oK5x7OPvEo6huq4Aep1EzOyFLRYvPI1X+6+YfC4fmGmvINNRW1X0qt+dma/a4p+X7dlaM45aEEbVN+Q0vWr2SOHz/e2Ng4OTlZS+vXmSWNVFMdvZNPw0BslhevrycMQdwDFsIBQk9qqIaY6p28h1MUrJHOwsMOHg0UHNt1+lahsZJxF64dCT7cw8i/bmEl5YXGzRQaN5NBaW3LzWj5/L4qzBeFxbM4DCMxMfH9+/dKSr+W0m3/WVQdvVNwxBQRG7fevi8IgnoAC+HAsdxkwYZnO61kRwkDeDu9jz5nf1ad0XUgirC6WMPb6mFyfV/AHYUnEPRHEvRHAgDaK360fn73+zCMoqKimzdvrl+/HgCQm5t7IvjQs8cPh8kK+xCbptk7LJtpI/zsohgcJgFBHAAL4cChLqZiLmd8M++ehzlcnqmP3Oa73n7/RHrMf5brq0+u3Oixml0vgZNTwcmpCE90opMb2nIzWz6/TT9/PPRjYWJu+fIFLjQqlQHALJvJGwwkNzjoYVAoKp3xqCDJ0eXS+6RXBA04WnQga2trq6+v72GDpqam5ubmfsvDbQgEgqgoR6YPhIVwQHE3dlt2f52jwUxxApxtstcoNIrYWLnyVUVSI+VQ2F/dRGmtVHJanetZV7a/HFpQpAAnEfgo6/HjjOUuToe26BN+ZBN3uT4hYa1kCJPVpJmbYdGo6Zqyr4nNSYXEibAQDmgPHjyYN28eh/7W87q2tjZra+tbt25xYuewEA4ocoIy4xRHxX65sdJsKdJZeExh/Y+9yYeHCCusXbrq7P6zAoZiBD3hlnRSW27Tbr9d/Py97vPZs69fv/r5+b19+3b9+vXh4eFCQkLMdmotMWaC9W4TmS7buw2VDA0OnDhpEntjQNzGxsaGQ3/red2tW7fOnTvHoZ3DQjjQzNeevfL5lrna9rKC0khn4Q10BiP+290L2deWmbjZa04FY4Gfz7brN65fjr/i4ek73XZ6l0GEbNHS0jJ+/PhLly51KbFYCdk2NJ6A7fqKAlhMM5nM9hgQBAFYCAceUbyIg5bNuazLviPXIJ2FBxDJlfuTj2LQmJO2R2T+f0QgHo93me9ib2fP3lk86HR6R001MzNjjgv8ncfa9ZfPhKw3VezceDG3dqXvfjaGgSCoA/u/6kKIm6c3K6UstYhUgnQQbveiOMnr0aYRisOCJ+zpqIJsx2Aw7t+/b2lpef78eVa2d3Ke96iYlFXZ0NGSVlH/trJ5up0dhxJC0CAHzwgHIEGcwDy92Wc+XdozdgvSWbhUfRsp+F14aWN50PhdmuJqHHoVBoNx9+7dgICA1tbWjRs3urqy1OOGQCBEX7oSvG/Pz/TccTKEp2WNGrr6Z6+GYTBw/jwI4ghYCAem2UOnx3+7+6X6m56UNtJZuM77n2mH3oZaKY3yH70Rh8Fx4iXodPq9e/f8/f0ZDMa2bdvmzp2L6s1EMJaWlvH3HpaXlz988GC9nZ2srCwnQkIQxAQL4cCEx+AXGjhHpZ8/NhneWPqfNholKv18Uum77aN9TGQ4tXQRg8GwsLAQFhYODAycPHlyn/ejoKCw1N2djcEgCOoWLIQDlq3GpGs5tz/8zDCXN0E6C1f4WvN9X/IRDTHV07bHhPCCnHshFAp1+/btIUO4fXUkaGCj0+lPnjzJy8tzdXUVE4OrlPQEdpYZsNAo9FIjl+iMGAYYyEtOsoLGoMV+ubH95X5Pk4W7x/qyvQqSyeSHDx92boFVEEJQbW3t4cOH1YfqTLOdvn7LDjnFIcuWe6SnpyOdi3vBQjiQjVO2xKDRL4uTkQ6CpPKmirVPtqVXZEVNOzxWaRR7d04ikfbt26eurn7x4sWBvcY1xCu8VnjLKw7ZGnDoh/YcxoHv7UHFbfNCY158MjMzGzbC8tu3b0gH5Ebw0uhAhgIodyO3ox+ixiqNHIRr9jIA427e45MZFxYaOM/RsUMBdq5bVFNTc+LEidDQ0AkTJrx48UJXV5eNO4egvklKSoqKigSLT4HhzgCL/9U6yrV9lCsozvh03j3wUNCZ06dY36Gbm1vn2nnjxo0TJ048f/4cACAsLKypqTlnzhwbGxsAQFNTU0hIyIcPH37+/Hn37l05OTl2vjEOg4VwgDOXN5ERkHqQ/9ROcwrSWfpVXWv9obcn6lpJYVMClUQU//4DLKuqqgoLCwsPD7exsUlJSelYLBCCEHciNAyvP5FiuaCb55RNqFM2XrroFRx0SEKi61pjf5Kdne3o6Ghra8t8KCsrm5+fb2FhsWzZMjKZ/PHjx0WLFs2ePTsiIqK1tbW2ttbBwcHDw4NCobDrHfUPWAgHPk+TRdte7ZukOo6AHSwLmr8sTj6SGjlNfWKAlVuvVhBkRUpKSl1dXVpaGrwRCHGVqqqqG/Hx1GUX/7jFsDng+ubz588zV/tikYqKiqmpaecWBQWFYcOGAQCsrKzs7Oz09fUXLVo0cuTIY8eONTc3e3h49PUdIAbeIxz4tCU19SSH3sq9j3SQ/kBubw5+FxaZfi7Aaqun6SK2V0EAgIODw7Fjx2AVhLhNdHQ0WkgSGNn+cQssnmK5+GhoOJ1OZ323X758efr06dOnTz98+PD7s1paWsbGxomJiX0IzD3gGeGgsNxk4erHW6ZrTBbGCyGdhYOyq3L2pxwxkzU6O/04AUtgyz6/fv26f/9+Jycne3t7tuwQgnpl+G1qZg1L/bDaT8YzjBxAz3NEmM4svh9I2JuJGtLNONrUmVgjia630u/evfvx40cAgI6Ojrm5+e8/NWTIkOrqalYSci2eLIRkMplIJKqoqDAnnfr+/fvPnz/19fWlpDg1XSSvUxZRtBxice3rbXdj9q+rxw2odNqF7GsJeQ83jlhlqWjBln1+/vw5PDz88ePHXl5eY8eOZcs+Iai3kuyxdNb6I+/9YX8o/CyFfgT0cCHk0z25ISr5W4y6nbEP393Pbd682c3NrYfXLS8v/9MM8ryC9y6NHjhwYOTIkQYGBsylnDds2LB58+Zbt25ZWlp2GcsFdeZu5Ho790FtSx3SQdivkFTs9XBDIenH2ekn2FIFMzIynJycZsyYoa+vX1BQsGvXLjgeGUIKDg34MCz95+3lSav/CbL//GeQTsUnn12/2lsAj+l2D33oV11UVJSRkTFhwoR/eIvI470zwi1btmzdulVDQ4P58MCBA3g8HgAwefLkyMhIZkde6HdSApJT1Sdc+Hxtrbkn0lnYhgEYN3I6LSX4z2g0mp2dXU5OzubNm8PDw+E1BoiHyMvLO8yYcfdVdLvR9O63SLtFb6xevHjxP75QXV1dQUEBiUT6+PFjQECAs7Pz6NGjAQBFRUVkMhkAUFxcTKVS1dTUejXFLoJ4rxB2ObLMKggA+PLli6amJhKJeIab/twFCd6OOjMUhHhpiM+fEMlVB1KOUmjtETZB7HpHGAxmy5YtlpaWOByusbGRLfuEoH6zeqX3rUmTQPodYGIHUP+94FeZj30c4uTkJCMjw/oOVVVVRUVFO7fIysrevn37zp074uLimpqaISEhc+bMYT7l4OBAJpPV1dUXLVoEAPj69WvH32cux+2FkEgk1tXVYTCYnkdrvX37NiYm5uXLl/0WjBeJ8onM0bY7++myn2UvOk9zpxfFSUdTI2do2S4ydEaj+n6Fn8FgfP/+XVv7f2t0jBs3jh0BIQgB1tbWjs7zrkfNw0opUcYsB2MWAwFxkPUA9zKS+jlRbaiu76aNvdrhrVu3urRERET8aeNPnz71JTQX4NJ7hCQSifmPxMTEoKCgo0eP9rDxx48fvby8EhISxMXF+yUdD3PSnfmxIiOvrgDpIH3XRCHvTTp87tPloAm7lxjN73MVpNPpV65cMTY2XrVqFXsTQhBSUCjU1dhLxT+KtngukHxzAuOrjt+miYl0dtARe/b06fev2UZGRkhn5EZIFsLExER7e3slJaXOHdMfPHigoKCgpaWlra2dnp7u6up6+vTpsLCwP+0kMzPT3d39xo0bKioq/ZKat/FjCa76c09nxiIdpI8+VmQuubeagOWLtAnRElfv207a29tjYmL09fVDQ0P37dv3+PFj9oaEIGQpKiru3r37Z8mP2Avn/X28S4p/XL921draGulc3AvJS6N4PN7JycnQ0DA5+des0C0tLW5ubufPn7ezszt69OiiRYt+P9eOi4sLDAxEo9FTpkyxt7evrq5ub293dnYGABgYGJw7d66f3wXPcdCadj0nIaMym3ML8nEChUY5++nysx+vt1muN5U17ONOKJQrV67s3btXRkbm0KFDcGggNIDhcDgjIyMBAYFe3RQcnJAshFZWVgCAqKiojkLInKrVzs4OALBixYodO3akp6d3md3H0dHR0dGRxZdoamry8/M7cuRIRws/P/+lS5fY8wa4EplM/mtPLWetmVEfzweN9e+fSL1VXl7+6tUrW1tbERERZkthQ3Hwx7AhQgpHx+0Vxgk1NTX1bc8nT558/PhxVFSUhYUFAKDn/bByJCFWwCPJotbWVrasYUKlUm/fvh124viLV69RACjIy3l5r1y2bJmsrOy/7xxBNBqtD7/7AgICaPRfrn1yV2eZ/Pz8jln8+fj41NTUCgoKuhTCXiEQCJMnT+48GwIWixUQEPjXoFyMRqP99Q3aaU9NKHr0qf7rSIVh/ZOKRa9fv94ffOB7SR6flsCu4D1jRo7evtEvE5Vz7evtlcOWTlL5124sa9euXbt2LYsbs3IkIVbAI8kiPj6+f//GEBgYeOzI4draWlstuXjH4Sqi/JezS8ODD+7ZvWv2rFlBIYd5d3ZANBrdhw/SX6sg4LZCSCKROr9PYWHhurp/GgCOxWItLCymTZv2z9F4BhqN/uv/eDQAS4xcTmbGjFQ0R3PNV/WGhgaXZW5yi9WV5+kBAGRngC/ZRdazJy6M8Dhle0RaoNdD+urq6o4fP+7g4NC371KsHEmIFfBIsujfq2BmZuaWLVs2jNRcMENfkv/X0IU1wzVWWqgnFlTtefIwJESx8xWyv9q0aVNhYWHHw+PHj8fGxr5//x4AICsrq6ysPG3aNAMDAwDAly9fIiMj09LSsFisjY3N+vXr+fjYPMs/CoXi0AeJuz6d0tLSHf1FAQD19fXw6jaHjBkyQgDH/+zHK6SD/M+Z82dFR0kLqf7/oCUUEDeUFlQUnomf0tsqWFlZuXXrVi0trZKSEtZXnIEgXhceFjZsiNS6ERodVZAJg0JN1ZDxMlU6e/o0c8w7i548eaKkpOT2/0RERJKTkwUFBT08PCwsLEpLS0eMGLF//34AwOvXr6WlpQ8ePLhjx46LFy9u27aNze+Nk7irEOrr66elpTGvkpNIpPz8fH19faRDDVjLTRaezrxEpdOQDvJL+KlwsdFdv/dIWMsHHj3E+k6IROKWLVt0dHTKysrevXt36tQp2J0YGiQaGxsvx15y05P/0wazdRQYVMrly5d7tdthw4bN/H9CQkIAAHV19UmTJi1cuPDYsWP37t3bsWNHdna2p6fnjh07xowZM3HiRD8/P96a8BLJQlhVVZWYmJiTk1NXV5eYmJiVlTVp0iQ+Pr79+/eXlJT4+vpaWVl1TKUGsZ2JjMEQEYW7eY+QDgIAAERyZSutjUHr2lOAQaUTWLvAQqFQvLy89PT0qFTqly9fYmJi4IcHGlTOnj2LBQz7oX+cZUkQh5k9VDb0WE/Dsn9HJBLz8vLy8vJKS0t/f9ba2trQ0PDevXudGzMzM4cOHdqrV0EWkvcIc3NzAwMDAQAyMjKBgYHjxo0zNDS8e/fuhg0bzp07Z2FhERMTg2C8wcDLdPHGZ/5T1MYL4Pj7/9XpDHpuXUFyaWpKWSqRXGVsa/btVZ68vWrnbcivarYEs/R7i8fjTU1N9+7dCycIhQaSmlO72oklrGx5LvKOnYYUH6an05vZOgrnrr59uXa2tkw3049ILduFlVXq0hgSEnLy5EkAgLGx8dWrV3//KdrhmhIAAB+BSURBVFVV1YqKio6HycnJERERKSkprGTmEkgWQktLyydPnnRp1NHR6fLlAuIcDTFVUxmD+G933QxYHZHy70htDenErKTS9yllqZL84paKw1ebL9OX0m21bRlqrFOvUS2mKwVQgEGj13wg8jXhmEMdutXU1MS8VsPk6Tlw5hOHICaxOd4MajsrW1qXYe9ev8oAPS0i8a6sVlZSwmLzYTy+m2ULMeLd9Mk4dOhQz8swVVVVdUxYk56ePmvWrNjYWD09PVYycwnu6jUK9b/lJgu9Hm500LIR4RPm6AsVkopTylKTS9/n1xeZyBhYDhnuabJQSkCyYwMBAYG7cXcOHD6YHJ8ioCnS/J00c/rMjfEbut3bhw8f9u7dW1tb++oVF/X3gSC267Y4dWvlhs3HIk++La0dNaT7DmIMAC7nED281wgoqrIrXklJSUZGxs6dOwEAWVlZtra2ERER06f/YfkLbgUL4WAnLyQ7Ttky9ssNL9PFbN95K7U1jfgpuTQ1pfwDHo0bpWixxMjFSEYfh+7+g2diYnI15kp9ff2bN28mTZpEIHSzynxSUtLBgwc/ffrk4+Pj4eHB9swQxKM0NDQmT5p0IfvLnwrh86KqH7WN7u7ubHm5mpqajx8/+vr6jh49esqUKd++fZs2bVpISMjs2bPZsv/+BAshBBYZzlt8b9Ucbbs+jNXrVnlTRXJpanLZ+5yaXB1JLXN5kyMTA5RFWB3GKyYmxpxdqIs3b94EBgZmZ2evW7cuLi6u2zIJQYOZ96pVc2fPzqpUNpQR6fJUYxs1OqPE3m56r/pR8/Hx/b6W/c6dO/fs2SMmJqalpeXm5rZq1SoUCnXy5MmysjJXV1dXV1cAgLi4eG1t7T++nX4DCyEEJPnF7TWnxmRf2zDcu887aaNRsqu+fviZ8ab0XRuNMlze1EHLZq/VNnZ1wwkJCTlz5szWrVtv3ryJxcLPLQR1Y/r06SOGW9heThmpLL1AX36ahiwOg/5c1RiTVXLrO5FfQDBws2+vdvju3bsuLfHx8d1uGRwcHBwc3MfcSIN/UCAAAHDRm+OW4OWo48D6eRtTBbky9Wf6h58ZHyoyFIXkRylabB/tM1RCA9XTDfu+WLFixfr16+EEJRDUAwwG8zo5JTU1NTwsdMPlK7uT8hWFCOnlNSPMh0We3Ofo6Aivo3QLFkIIAACE8IKOOjPOZMaOaTN7mPhw6cKlPXT66jLswUTWwFLRYtOIVUJ4QXbloVKpV65cmTBhgoKCArMFTlYJQSyysLA4e+58yOEjZ86cycvLO+XhYWZmhnQorgYLIfRLzaufR4MOXtKSw2rx31h6SxwjFrIvaLz1+I4NOoY9JJe9l+KX6Bj2wN7ZSikUSkxMzMGDB5WUlIYNG9ZRCCEI6hUJCYklS5aUlZXBxXj/ChZCCAAASkpKgsKC9beOwArgAABglGILkey+cnl+dm5RQ0nPwx7YhblY4J49e+Tk5KKjoydMmMD2l4CgQSI1NTU0LPTKlSuUNor5cPM1q9bA66I9gIUQAgCAo2HHRK1lflVBAAAA/LKCNEXU2F1TlcxU/zrs4R+1tbWdOHHi8OHDI0aMuHLlSudlsyAI6pVLly4FHw7OSMuQ0pPTWGZAkBMse1bs7uG+et0az2Uevr6+cBr638FCCAE6nX71+lW17cZd2qXGKWCTqZd3R3M6AAaDKS4ufvTokaFhH5eehyAIAJCXl7dg4QK5ccrDDloLDvk1RYawu5jafF3i69IT0aF4PD4gIID1HR4+fLisrKzj4ZYtWx4+fPj582cAgKSkpLKy8oQJE6SlpTv/SFJSUkJCgre3t7KyMjveU3+AffAggEajJaWkKKS2Lu2tP5vNDPq+KjLrsFjs8ePHYRWEoH8UGRkpoiimtdSoowoyYQVwilPV5KepRkZHUigU1ncYExNTWVmp/P9wONzNmze/fv2qrq7e2tp65coVVVXVzpNCNzQ0eHt7Hz16tHP55H7wjBACAIBNqzfsux1MmPGfb3DkpNo1N1ez/bV+/vwZHBycl5d3+/Zttu8cggatlpaWU2dOSTso/2nskpy1csnN3Js3bzo7O7O+26lTp3aZa9Tc3LxjUqc7d+7MnTt3zJgx6urqAIDNmzevWrVq06ZNfXwPCIFnhBAAADjOdWxKq616XkZrpQIA2mpbK24WqcupqqqqsvFViouL165dq6en19TUFBYWxsY9QxB05cqVltYW2TF/HAqMFcRJDZc/EXaiV7ul0WgUCoVCoVCp1N+fdXBw0NTUZH6pffHiRU5OzrJly3qbHHHwjBACAAA+Pr70t2mRJyNPB59hCKBEsELbVm2c59SLr409KywsPHr0aGxsrIuLy5cvX+Tl/7h2KARBnR1+H1HaWM7KlldCzkkMl8Pw9/RXXWacUlJA0pLzK8W7m49044iVCkJdlzP08PBYsWIFAMDCwuLly5e//5SmpmZJSUlzc/PKlSuvX7+OYut4qv4BCyH0i5SU1Pat27f5bvvx44eamhob93zixImAgICVK1d+//5dXLybVdAgCPoTG/UJze0trGxZaPrl5bu/LMZCLmkQEBZcOsaNX6CbuQ/FCWK/N54+fbrnZZhIJBI/P7+fn5+rq6uuri4rUbkNLITQf6DRaPZWQQDA7NmzFy9eLCzM2WWeIGhA0pPSZnHL3Zv8jY2NGwvrhdW6qWdM1S/KPJZ5jNUYxaZ0gEwmf/r0ad26dX5+fuXl5czpRhsaGqZOnbp///5Vq1ax64U4ChZCiP3evn1raGgoKPhrxjVFRUVk80DQYGBkZDRi1IiSp8XCy7ovhKRvtaQfdV7sW7/627dva9asUVNTs7e3nzhxIo1GY7arqqrGxcVZWVmx64U4DXaWgdjpxYsXkyZNcnFxyc/PRzoLBA06q1eurnpb3lbX+vtTDDrj56OicePHaWuzeor5J0eOHNHQ0BAWFp4wYYKOjk5iYiIWixURERH/fygUSlhYmIcmsoFnhBB7vHnzxt/fv6ioyNfXd8mSJTgc7u8/A0EQW82dO9dvu99Hn+dSIxTkJiqLaIkDACiktooXxdUvy1rrWjfejOrVDp89e9ZlvvuYmJj29nYAAB6P77jq00VRUZGQkFBf3wQCYCGE/gmDwbh79+7evXubm5s3bdrk6ur6+zKeEAT1Dz4+vtzvubdv3z4ReuL1ntdiahI4aUJNWoWUtLTv6s3Lli2Tk+vaKbRnv8/HxkqFExP7401K7gQLIfRPGhsbjx8/vm3bNgcHB17sNg1BAwwOh5s7d+7cuXO/fv0aFh6em/fd6+oJBwcH+A21B7AQQv9ERETkyZMnSKeAIKgrXV3d0BO9GzvfDwoKCh48eDB79myuGkwMO8tAvdDW1hYREeHr64t0EAiCeJKKigqJRCKTyUgH+Q9YCCGWtLW1RUdHa2pqxsfHz5o1C+k4EATxJO68QgsvjUJ/0dTUdPr06UOHDpmZmd28eRMuFghBUIevX7/+aTYZBoNx48YNBoPR0aKnp6evr995GwqFUlpaypywG0GwEEI9OXv2rK+v79SpUxMTE3l08iQIgv4RhUK5dOkSPz8/gUDIyclxcHDQ09MDAGRnZxcWFjL/MtTX1wcEBCgqKvr4+DB/CoVCzZ07t+c94/H45ORkAoGgoKDA6XfRA1gIoZ4YGxunpKRoaGggHQSCIGTU1NR4eHgEBQUxz9taW1utra0fPnwoKip64cKFwMBA5mZiYmLy8vJ/nUYqLy+vsLDw6dOnsrKyzGkXXVxctm/fvn//fk6/kR7AQgj9R3l5uZycHBr96+axmZkZsnkgCEIQg8FwcnLaunVrx9VLAoGgoaHx4MEDDQ2NLotpP3/+/OTJkz3vUFNTs8s2aDRaVFS0vLwcwZNCWAihXwoLCw8ePHjjxo0XL14YGBggHQeCIAAA2L17d3Fx8e/tu3btUlJSYv6bwWB0uwogGo3uXHUKCwv37t37+2bq6up+fn7dvvrt27cbGxsnTZrUuZFKpVZXV2dnZ3csz8tsrKio+Pr16/v378lksqurKwtv7pdRo0YlJCR4sm8S1N6ChRACBQUFgYGBcXFxCxYs+Pz5s6ysLNKJIAj6xdjYeMiQbtba7TK9maWl5e/bdFzaYRIWFu52M2lp6T+9+uXLl6dPn96l8cOHDx4eHikpKZ2DpaWlCQoKWllZYbHYMWPG9KoQKisr379/n/Xt2Q4WwkEtOzv70KFDjx8/9vLyys/Ph4sFQhC3mTlz5l+3QaFQ7u7uf91MSkqKlc06Ky4unj17dueWlJQUAMDYsWNDQ0M7j4V48eLFypUrcTjc169fe7uUm7CwcHV1da9+hL3gOMLBq7Ky0s7OzsTEJD8/f9euXbAKQhDUhYqKSlNTU8dDOp2+bdu2Y8eO4fF4AoFApVI7nnrx4sW4ceMAANevX581a1ZVVRXrr0IikaSkpNgYu7dgIRy8ZGRkCgoKfHx8/jSFPARBg9yGDRvi4uLodDoAoL29fc2aNcuWLbOzswMAqKqqlpWVMTejUqlVVVXMGb2fPXs2efLkt2/fsv4qJSUlbF8PvFfgpdFB5MmTJyUlJUuXLu1o6XILAYIgqDMLC4uAgICIiAg1NbXq6uotW7Z03BecMWNGUlKSiooKAKCpqWn16tXM9vXr1yclJU2ZMoX1V0lKSlq0aBHbw7MOFsKBj7lS0r59+xobG3fv3o10HAiCeImFhYWFhcXv7SNGjIiPj3dxcQEAiImJLVy4kNnu4ODQq/3TaLT6+vq/DkDkKHhCMJDR6fSEhIThw4dv377d29v706dPf53oAYIgiBUoFMrV1fXu3bv/uJ8LFy6sWbOGLZH6DJ4RDli3bt3aunWruLj4rl27bG1t4WKBEASxl7Gx8T9Ook2hUCwtLbsdH9KfYCEcsFAoVFhY2IQJE5AOAkHQgPWPk2/g8fihQ4eyK0yfwUI4cFAoFDwe3/FwxowZCIaBIAjiFfAe4UDQ1NQUFBSkqqqam5uLdBYIgiAeAwshb2tsbAwMDFRXV3/16tXdu3e1tLSQTgRBEMRj4KVRXlVdXR0aGhoeHm5jY/P69WttbW2kE0EQBPEkWAh5UklJiYmJybx581JTU5kDWiEIgqC+gYWQJykpKX379g3Z2fkgCGK7b9++7dmzB+kU3CgnJ4dzO4eFkDfk5uaWlZVZW1t3tMAqCEEDzMyZM8vLyysqKv60QZee4YOKpqamrq4uh3YOCyG3+/z58/79+588ebJ79+7OhRCCoIHH29u7h2cbGxuFhYX7LczgAXuNcq9Pnz4tXLhw0qRJWlpaubm5K1asQDoRBEHQAAQLITd6+/bt9OnT7ezszM3NCwoKdu3aJSoqinQoCIKggYknL41WVVWVlZWZmJgAAIhEYmlpKbNdS0tLREQE0WjskZycPGPGjJs3bw7a+wEQBEH9hvcKobe3d3p6+pcvX0gkEgAgJibmzp07enp6AIB169YNjELo4+ODdAQIgqDBgvcKYXh4OABAXFy8o8XFxYV375/R6fRbt24FBQXFxcUhPgU7BEHQIDQQ7hEeP37cyspq165dbW1tSGfpBeZigcwFoH18fJBdlxKCIGjQ4vZCWFhYmJGR8e3btz9t4OTklJSUdOfOnYKCgn379vVntj5rb2+PiYnR09MLDAzctWtXenq6o6MjXC8QgiAIEdx4abStra2xsZE5YPzhw4fZ2dkKCgp+fn7dbtwxwdiqVau2bt3afyn7Kj8/f+LEidra2tHR0VZWVkjHgSAIGuyQLIQXL16Mjo7++vXr3LlzIyIimI3R0dG+vr4CAgKSkpI3b978682/8vJyBQUFAEBCQgLn5h1gI1VV1Rs3bgwbNgzpIBAEQRAAyF4alZSU3LBhw6xZs5qbm5ktJSUlPj4+L1++LCsrs7W1XbNmze8/dezYMXNzc0lJSXNz86ioqIMHDxobG5uYmOTl5XHnHH0kEun79+8dDzEYDKyCEARB3APFYDCQTbBt27aysrLz588DAA4dOsRcVw8A8PPnTyUlpYqKin+ZVHPs2LH19fUSEhIdLfz8/NevX//32Kyora0NDw8/derU6tWrN2zY0D8v2tTUJCQk1D+vNbDBI8ku8EiyCzySfSAgIIBG/+WUj7vuERYUFHSsqycvLy8kJFRUVPQvhZBAILi6ug4fPryjBYvF9sMnqaqqKiwsjLlYYEpKSn+ul8tgMOCvClvAI8ku8EiyCzySHMJdhZBEIklLS3c8FBISqq+v/5cdYrFYY2PjCRMm/HM0VhGJxCNHjkRFRTk5OaWlpcGhgRAEQVyOuwqhjIxM58pXV1cnIyODYJ4+2Llzp5iYWE5OjqysLNJZIAiCoL/jrkJoaGh4+vRp5r+/fPmCQqHU1dWRjdRbUVFRSEeAIAiCegHJXqPFxcWJiYmFhYU/f/5MTEzMzc11dnbOzc0NDw///v37xo0bFyxYwOUXxDMyMhYvXtzY2Ih0EAiCIKiPkCyE2dnZ0dHRNBpNTEwsOjr63bt3wsLCDx8+TEhImDNnztChQ0NCQhCM17N3797Z29vb2dmZmJhgsdx1Yg1BEASxDsm/4La2tra2tl0azc3NHzx4gEgeFr158yYwMDArK2v9+vXXrl3j5+dHOhEEQRDUd/BUphfy8/MXL15cWVm5devW+Ph4HA6HdCIIgiDoX8FC2AsyMjKrVq2aO3cuBoNBOgsEQRDEHty++gSy6HR6XV1dx0NhYWFnZ2dYBSEIggYSWAi7197efu7cOV1d3aNHjyKdBYIgCOIgeGm0KwqFcuXKlb1798rIyAQHB9vb2yOdCIIgCOIgWAj/p62t7fz58wEBATo6OjExMSNHjkQ6EQRBEMRxsBD+j5OTEw6Hu3PnjqmpKdJZIAiCoH4CC+H/xMXF4fF4pFNAEARB/Qp2lvkfWAUhCIIGIVgIIQiCoEENFkIIgiBoUIOFEIIgCBrUYCEcUIqKikaPHo10ioGgoaFBT08P6RQDhKqqKpVKRTrFQGBmZkYkEpFOMQDBQjig0Gg0uDgiWzAYDBKJhHSKAaKhoYHBYCCdYiBobGyk0+lIpxiAYCGEIAiCBrUBPo6wtbU1NjY2NTUV6SD9pLa2tr6+fs+ePUgH4Xmtra0UCgUeSbag0+l79+6Fs9X/u6ampsOHDwsLCyMdhJd4enrKysr2vA1qYF+yKC0tjY6ORjoFBEEQhAxvb285ObmetxnghRCCIAiCegbvEUIQBEGDGiyEEARB0KA2wDvLDHKVlZXFxcXq6uoSEhLMFgaDUVhYyPy3gIDAXy+dQwAAMpncMXhLSkpKRESk46mioiIGg6GmpoZQNB5DIpFqamo6HqqoqDB70JSUlLS3twMAsFissrIyYvl4RHV1NQBASkqK+bCqqqq6ulpbWxuN/t+JDZVK/fbtm7y8fMfvPtQDeI9wwDp27NiNGzf09PRevnzp7+8/b948AEBLS4ucnNzUqVMBAObm5ps3b0Y6Jg+4ceOGn5+fkZERAMDDw2PSpEnMdh8fn9zcXACApqbmkSNHkIzIIx48eHD27FkAQHNz84sXL6qqqvj5+QEA2traRkZGKBRKWlo6LCwM6Zjci0KhGBkZtbS02NjYREVFAQAuXLgQGhpqaGhYVFR0//595soBTU1NU6dONfy/9u4/Fur/DwD4m5Hy61Nyool0uDtCOldOfi1/XEWNKbOMLS1pUTaWP/JjSymbLEuyEbZaKWpoDSM/NiPyJmRZ5y7kRDp3XHc7jnt//3hv7+8tPpv2Ke973z0ffz1fL+/3eb5fe/Hc+17ve52Hx/v377Ozs0+dOkV24loPAzpKLpfjwcDAAJvNxmOFQuHu7k5eUpRUU1OTlpb2S6dAIPD09FSr1Wq1+sCBAwKBgJTcKKqysvLcuXNE09XVVaVSkZgPhahUqqqqqoSEBDx2dHQUi8UYhsXHx1dVVeHHFBcXp6amYhg2OTnJYrFIzJYqYI1QZ5mamuKBUCh0dHQk+qenp8PCwi5duiQUCklKjXrevHkTFhaWk5OjUCjwHhRFuVyugYGBgYEBl8vt6+sjN0NqKS8vj4+P1+yJjIyMi4vr6ekhKyWqMDL6/3rW1NTUzp078Tc//f39iQ9M9/X1+fv7IwiyZ88epVK5uLhISqoUAmuEOkIikchkMkNDQ3t7e83+8fHxzMzM2tpavGlsbFxXV+fs7Nza2srj8UZGRuBbGH8hFovlcrmRkdHu3bvxHg6HU11d/c8//+Tm5l69erW0tBRBEKlUam5ujh9gYWEhkUhIy1hbyWQyfFjs7e01l6/4fP7s7KzmprgVFRVOTk6fPn06c+ZMZ2cnLBPiMAz7+vUrgiDbt2/XXJkmSKVSMzMzPDY3Nycm4drJue7pgACFkNowDDMwMEAQpLa2tqmpaevWrZWVlcRPp6amIiIiKioqXFxc8B4jI6OAgAAEQWJiYgoLCwUCAYvFIiNxrUOM5LNnzzo7O62trYuKivAfEf+Xb9y4weFw8JhGo3V1deHxjx8/fH19Nz1lLUWMZEdHx5MnTxAEKS0t1dwMBb8dxI/B+fn5IQhiZ2fH4/G6u7v1vBASA6hUKvFV/Ojo6PDw8LVHWltbz8/P47FYLLaxscFjGo22bj/4V6S+MQs2pKOjIyoqisViRUdHE52tra1OTk6mpqbe3t4fP35ce9bMzAybze7o6MCbKpWqpaVFJpOtrq5iGCYSiWxtbaVS6eZcgpZoaGiIjIxkMBgXL14kOl+/fm1vb29qasrlctdd6ltYWMCDmpqao0ePrqysNDc3z83NOTs7y+VyuVzu4uIyNze3SdegHYaGhmJjYz08PAICAjQ7PT09TU1N6XQ6MfF+oVKpHBwcpqen8WZbW9vCwoJSqcQwTKFQeHp69vT0bEL+2iA9PT0wMHDfvn2af6QXLlywsLCwsLC4du2aWq1e90RijVCtVru5uX3+/BnDsBMnTrS0tHz79m1gYODFixcxMTEYhvX19fn5+W3WBVEYFEIKaG5uLikpSUtLCwoKwnuUSiWNRnv+/Llarc7NzSWehdGUkZHh4ODAZrPZbDaPx5NKpSwW6+3btywW69ChQ25ubsTSuv6or68vLS1NTEwMDw/He6RSqaWlZWNj4+rqanp6ekhIyNqzsrKyPDw8OBwOl8sdGRn5+fOni4sLhmGPHj3icDgcDqesrGxTL0ML9PX1FRYW5uXlOTo6Ep1eXl55eXlqtfrp06e2trZLS0trT2xubo6KiiKabDYbRVF8TjKZzFu3bm1C8lri5s2btbW1dnZ2DQ0NeE9RUZG3t/fCwsLs7CydTq+url571vHjxxkMhqOjI5vNHh8f7+zs9PHxOXLkSEpKilqtrq+vT0hIUKlU58+f9/f39/X1HRgY2NzLoiQohJRRUlJCFMKXL1+6urrisUKhMDMzGxwc3PhLrays/PH0KOT27dtEISwrKzt8+DAei8ViY2PjiYmJdc9ad9Dwp0b/Up7ar7GxkSiEKIpaWFjg93YYhtHp9Lq6uo2/lN7Oyb179xKF0MfHp6KiAo/v3LkTGhq6wRdZdxLq88z8XfDUKCXx+Xx3d3c83rZtm5OT09jY2MZPh+8BIGiOpJWV1a5duwQCwbpHrjto+FOjfzE/6uDz+c7OziYmJnjTzc0N5uTv0pyN7u7uGx/AdSchzMyNg0JISZpPiyEIYmlpSayNg98CI/mnwEj+R2q1enFxUfNpT81deMBfBYWQkqytrTU/GySRSGg0Gon5UBeM5J8CI/kfGRoaWllZLSws4E2pVApPe24aKISUxGQyBwcH8VgmkwmFQiaTSW5KFMVisT58+IDHMzMzP378cHV1JTclimKxWHw+Xy6XIwiCYdjQ0BB8Mud3MZlMYjYODg7CH/WmgUJIAVKpFEXRyclJmUyGoqhQKOTxeBiG3bt3TyKRZGZm+vr6MhgMstOkALFYjKKoSCQihjQiIkIkEpWXl0skkuvXr4eGhsJG5BuhUChQFOXz+cvLyyiKjo6Ourm5HTx4MCsrSyKRFBQUbNmyJSQkhOw0tdro6CiKoktLS2NjYyiKKhSKhISEgoICgUAwPDxcUlKSkJBAdo76AjbdpoCurq7s7GyiGRQUlJGRMTg4eOXKFT6f7+PjU1xc/MuGMmBdTU1N+fn5RDM0NDQlJeXdu3epqalfvnzx9/d/8OCBbryhl5+fLxQKuVxubGzs33h9gUCQmJhINBkMRlFR0cTExOXLl/v7+xkMxv379/fv3/83frXOSE5OHh0dJZoPHz6k0+k5OTmVlZXGxsZJSUnJyckkpqdXoBACoIMUCkVwcHBSUlJcXBzZuQCg7aAQAqCDVCrVjh07RkZGNPdbBwCsC9YIAdBBvb29NBoNqiAAGwGbbgOgg9rb2wMDAwcGBoaHh01MTE6fPg2fWAfg38AdIQA6qL29/fv37wqFIi4urr+//+7du2RnBID2gjtCAHTN8vJyV1fXq1ev8O/8s7S0/K3dzgDQN3BHCICu6e3ttbGx4fF4eLO/v9/Ly4vclADQZlAIAdA17e3twcHBeCyXy5uamk6ePElqRgBoNSiEAOiatra2oKAgPK6vr/fw8HBwcGhsbCQ3KwC0FhRCAHTK0tJSd3c3UQjb29uPHTsml8unp6fJTQwArQWFEACdIhKJvL29nZyc8GZkZOT8/Pzjx4/Pnj1LbmIAaC3YWQYAAIBegztCAAAAeg0KIQAAAL0GhRAAAIBeg0IIAABAr0EhBAAAoNegEAIAANBrUAgBAADoNSiEAAAA9BoUQgAAAHrtf5w3qNN5AyTzAAAAAElFTkSuQmCC", "image/svg+xml": [ "\n", "\n", "\n", " \n", " \n", " \n", "\n", "\n", "\n", " \n", " \n", " \n", "\n", "\n", "\n", " \n", " \n", " \n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n" ], "text/html": [ "\n", "\n", "\n", " \n", " \n", " \n", "\n", "\n", "\n", " \n", " \n", " \n", "\n", "\n", "\n", " \n", " \n", " \n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n" ], "text/plain": [ "Plot{Plots.GRBackend() n=4}" ] }, "execution_count": 8, "metadata": {}, "output_type": "execute_result" } ], "source": [ "err = @. abs([FD1 FD2 FD4] - exact)\n", "\n", "plot(h,err,m=:o,label=[\"FD1\" \"FD2\" \"FD4\"],\n", " xaxis=(:log10,\"\\$h\\$\"), xflip=true, yaxis=(:log10,\"total error\"),\n", " title=\"FD error with roundoff\", legend=:bottomright)\n", "\n", "plot!(h,0.1*eps()./h,l=:dash,color=:black,label=\"\\$O(h^{-1})\\$\")" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Again the graph is made so that $h$ decreases from left to right. The errors are dominated at first by truncation error, which decreases most rapidly for the 4th order formula. However, increasing roundoff error eventually equals and then dominates the truncation error as $h$ continues to decrease. As the order of accuracy increases, the crossover point moves to the left (greater efficiency) and down (greater accuracy)." ] } ], "metadata": { "kernelspec": { "display_name": "Julia (faststart)", "language": "julia", "name": "julia-fast" }, "language_info": { "file_extension": ".jl", "mimetype": "application/julia", "name": "julia", "version": "1.4.1" } }, "nbformat": 4, "nbformat_minor": 4 }