Skip to article frontmatterSkip to article content

Next steps

Details on the computation of the eigenvalue and singular value decompositions are presented at length in Stewart (2001) and more briefly in Chapters 7 and 8 of Golub & Van Loan (1996). A classic reference on the particulars of the symmetric case is Parlett (1980), while Trefethen & Embree (2005) focuses on the non-normal case. Dimension reduction via the SVD often goes by the name principal component analysis, which is the subject of Jolliffe (2002).

References
  1. Stewart, G. W. (2001). Matrix Algorithms Volume 2: Eigensystems. SIAM.
  2. Golub, G. H., & Van Loan, C. F. (1996). Matrix Computations (3rd ed.). JHU Press.
  3. Parlett, B. N. (1980). The Symmetric Eigenvalue Problem. SIAM.
  4. Trefethen, L. N., & Embree, M. (2005). Spectra and Pseudospectra: The Behavior of Nonnormal Matrices and Operators. Princeton University Press.
  5. Jolliffe, I. T. (2002). Principal Component Analysis (Second). Springer Science & Business Media.