Skip to article frontmatterSkip to article content

Chapter 13

Functions

Create a tensor-product grid
tensorgrid.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
function [mtx, X, Y, vec, unvec, is_boundary] = tensorgrid(x, y)
% TENSORGRID Tensor-product grid.
% Input:
%   x, y           1d projections of the grid nodes (lengths m and n)
% Output:
%   mtx            evaluate a function on the grid (function)
%   X, Y           mtx applied to the coordinate functions (m×n)
%   vec            convert grid shape to vector shape (function)
%   unvec          convert vector shape to grid shape (function)
%   is_boundary    indicator of boundary nodes (logical m×n)
    m = length(x) - 1;
    n = length(y) - 1;
    vec = @(U) U(:);
    unvec = @(u) reshape(u, m+1, n+1);
    [X, Y] = ndgrid(x, y);
    function F = grideval(f)
        F = zeros(size(X));
        for k = 1:numel(X)
            F(k) = f(X(k), Y(k));
        end
    end
    mtx = @grideval;
    
    % Identify boundary points.
    is_boundary = true(m+1, n+1);
    is_boundary(2:m, 2:n) = false;
end
Solution of Poisson’s equation by finite differences
poissonfd.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
function [X, Y, U] = poissonfd(f,g,m,xspan,n,yspan)
%POISSONFD   Solve Poisson's equation by finite differences.
% Input:
%   f            forcing function (function of x,y)
%   g            boundary condition (function of x,y)
%   m            number of grid points in x (integer)
%   xspan        endpoints of the domain of x (2-vector)
%   n            number of grid points in y (integer)
%   yspan        endpoints of the domain of y (2-vector)
%
% Output:
%   U            solution (m+1 by n+1)
%   X,Y          grid matrices (m+1 by n+1)

% Discretize the domain.
[x, Dx, Dxx] = diffmat2(m, xspan);
[y, Dy, Dyy] = diffmat2(n, yspan);
[mtx, X, Y, vec, unvec, is_boundary] = tensorgrid(x, y);

% Form the collocated PDE as a linear system. 
Ix = speye(m+1);  Iy = speye(n+1);
A = kron(Iy, sparse(Dxx)) + kron(sparse(Dyy), Ix);  % Laplacian matrix
b = vec(mtx(f));

% Replace collocation equations on the boundary.
scale = max(abs(A(n+2, :)));
I = speye(size(A));
idx = vec(is_boundary);
A(idx, :) = scale * I(idx, :);           % Dirichet assignment
b(idx) = scale * g( X(idx),Y(idx) );     % assigned values

% Solve the linear sytem and reshape the output.
u = A \ b;
U = unvec(u);
Solution of elliptic PDE by Chebyshev collocation
elliptic.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
function u = elliptic(phi, g, m, xspan, n, yspan)
%ELLIPTIC   Solve an elliptic PDE in 2d.
% Input:
%   phi          defines phi)(x,y,u,u_x,u_xx,u_y,u_yy) = 0 (function)
%   g            boundary condition (function)
%   m, xspan     size and interval of x discretization (integer, 2-vector)
%   n, yspan     size and interval of y discretization (integer, 2-vector)
% Output:
%   U            solution (n+1 by n+1)
%   X,Y          coordinate matrices (n+1 by n+1)

    % Discretize the domain.
    [x, Dx, Dxx] = diffcheb(m, xspan);
    [y, Dy, Dyy] = diffcheb(n, yspan);
    [mtx, X, Y, vec, unvec, is_boundary] = tensorgrid(x, y);

    % Identify boundary locations and evaluate the boundary condition.
    idx = vec(is_boundary);
    gb = g(X(idx), Y(idx));

    % Evaluate the PDE+BC residual.
    function r = residual(u)
        U = unvec(u);
        R = phi(X, Y, U, Dx * U, Dxx * U, U * Dy', U * Dyy');  % PDE
        R(idx) = u(idx) - gb;                                  % boundary
        r = vec(R);
    end

    % Solve the equation.
    u = levenberg(@residual, vec(zeros(size(X))));
    U = unvec(u(:, end));

    function u = evaluate(xi, eta)
        v = zeros(1, n+1);
        for j = 1:n+1
            v(j) = chebinterp(x, U(:, j), xi);
        end
        u = chebinterp(y, v, eta);
    end

    u = @evaluate;
end

function f = chebinterp(x, v, xi)
    n = length(x) - 1;
    w = (-1.0) .^ (0:n)';
    w([1, n+1]) = w([1, n+1]) / 2;

    terms = w ./ (xi - x(:));
    if any(isinf(terms))     % exactly at a node
        f = v(xi == x);
    else
        f = sum(v(:) .* terms) / sum(terms);
    end
end

Examples

13.1 Tensor-product discretizations

Example 13.1.2

Here is the grid from Example 13.1.1.

m = 4;   
x = linspace(0, 2, m+1);
n = 2;   
y = linspace(1, 3, n+1);

For a given f(x,y)f(x,y) we can find mtx(f)\operatorname{mtx}(f) by using a comprehension syntax.

[mtx, X, Y] = tensorgrid(x, y);
f = @(x, y) cos(pi * x .* y - y);
F = mtx(f)
Loading...

We can make a nice plot of the function by first choosing a much finer grid. However, the contour and surface plotting functions expect the transpose of mtx(ff).

m = 80;  x = linspace(0, 2, m+1);
n = 60;  y = linspace(1, 3, n+1);
[mtx, X, Y] = tensorgrid(x, y);
F = mtx(f);

pcolor(X', Y', F')
shading interp
colormap(redsblues),  colorbar
axis equal
xlabel("x"),  ylabel("y")
Image produced in Jupyter
Example 13.1.3

For a function given in polar form, such as f(r,θ)=1r4f(r,\theta)=1-r^4, construction of a function over the unit disk is straightforward using a grid in (r,θ)(r,\theta) space.

r = linspace(0, 1, 41);
theta = linspace(0, 2*pi, 121);
[mtx, R, Theta] = tensorgrid(r, theta);
F = mtx(@(r, theta) 1 - r.^4);
clf,  colormap(parula)
contourf(R', Theta', F', 20)
shading flat
xlabel("r"),  ylabel("\theta"), 
title("A polar function")
Image produced in Jupyter

Of course, we are used to seeing such plots over the (x,y)(x,y) plane, not the (r,θ)(r,\theta) plane. For this we create matrices for the coordinate functions xx and yy.

X = R .* cos(Theta);  Y = R .* sin(Theta);
contourf(X', Y', F', 20)
axis equal,  shading interp  
xlabel('x'),  ylabel('y')
title('Function over the unit disk')
Image produced in Jupyter

In such functions the values along the line r=0r=0 must be identical, and the values on the line θ=0\theta=0 should be identical to those on θ=2π\theta=2\pi. Otherwise the interpretation of the domain as the unit disk is nonsensical. If the function is defined in terms of xx and yy, then those can be defined in terms of rr and θ using (13.1.6).

Example 13.1.4

We define a function and, for reference, its two exact partial derivatives.

u = @(x, y) sin(pi * x .* y - y);
du_dx = @(x, y) pi * y .* cos(pi * x .* y - y);
du_dy = @(x, y) (pi * x - 1) .* cos(pi * x .* y - y);

We will use an equispaced grid and second-order finite differences as implemented by diffmat2. First, we have a look at a plots of the exact partial derivatives.

m = 80;  [x, Dx] = diffmat2(m, [0, 2]);
n = 60;  [y, Dy] = diffmat2(n, [1, 4]);
[mtx, X, Y] = tensorgrid(x, y);
U = mtx(u);
dU_dX = mtx(du_dx);
dU_dY = mtx(du_dy);
clf,  subplot(1, 2, 1)
pcolor(X', Y', dU_dX')
axis equal,  shading interp
title('∂u/∂x')
subplot(1, 2, 2)
pcolor(X', Y', dU_dY')
axis equal,  shading interp
title('∂u/∂y')
Image produced in Jupyter

Now we compare the exact partial derivatives with their finite-difference approximations. Since these are signed errors, we use a colormap that is symmetric around zero.

err = dU_dX - Dx * U;
subplot(1, 2, 1)
pcolor(X', Y', err')
colorbar,  clim([-.4, .4])
axis equal,  shading interp
title('error in ∂u/∂x')

err = dU_dY - U * Dy';
subplot(1,2,2)
pcolor(X', Y', err')
colorbar,  clim([-.1, .1])
axis equal,  shading interp
colormap(redsblues)
title('error in ∂u/∂y')
Image produced in Jupyter

Not surprisingly, the errors are largest where the derivatives themselves are largest.

13.2 Two-dimensional diffusion and advection

Example 13.2.1
m = 4;  n = 3;
x = linspace(0, 2, m+1);
y = linspace(-3, 0, n+1);

f = @(x, y) cos(0.75*pi * x .* y - 0.5*pi * y);
[mtx, X, Y, vec, unvec] = tensorgrid(x, y);
F = mtx(f);
disp("function on a 4x3 grid:")
disp(F)
function on a 4x3 grid:

   -0.0000   -1.0000    0.0000    1.0000
    0.3827    0.7071    0.9239    1.0000
   -0.7071    0.0000    0.7071    1.0000
    0.9239   -0.7071   -0.3827    1.0000
   -1.0000    1.0000   -1.0000    1.0000

disp("vec(F):")
disp(vec(F))
vec(F):

   -0.0000
    0.3827
   -0.7071
    0.9239
   -1.0000
   -1.0000
    0.7071
    0.0000
   -0.7071
    1.0000
    0.0000
    0.9239
    0.7071
   -0.3827
   -1.0000
    1.0000
    1.0000
    1.0000
    1.0000
    1.0000

The unvec operation is the inverse of vec.

disp("unvec(vec(F)):")
disp(unvec(vec(F)))
unvec(vec(F)):

   -0.0000   -1.0000    0.0000    1.0000
    0.3827    0.7071    0.9239    1.0000
   -0.7071    0.0000    0.7071    1.0000
    0.9239   -0.7071   -0.3827    1.0000
   -1.0000    1.0000   -1.0000    1.0000

Example 13.2.2
m = 60;  n = 40;
[x, Dx, Dxx] = diffper(m, [-1, 1]);
[y, Dy, Dyy] = diffper(n, [-1, 1]);
[mtx, X, Y, vec, unvec] = tensorgrid(x, y);

Note that the initial condition should also be periodic on the domain.

U0 = sin(4*pi*X) .* exp( cos(pi*Y) );
clf,  surf(X', Y', U0')
mx = max(abs(vec(U0)));
clim([-mx, mx]),  shading interp
colormap(redsblues)
xlabel('x'),  ylabel('y')  
title('Initial condition')
Image produced in Jupyter

This function computes the time derivative for the unknowns. The actual calculations take place using the matrix shape.

f13_2_heat.m
function du_dt = timederiv(t, u, p)
    [alpha, Dxx, Dyy, vec, unvec] = p{:};
    U = unvec(u);
    Uxx = Dxx * U;  Uyy = U * Dyy';     % 2nd partials
    dU_dt = alpha * (Uxx + Uyy);  % PDE
    du_dt = vec(dU_dt);
end

Since this problem is parabolic, a stiff integrator is appropriate.

ivp = ode(ODEFcn=@f13_2_heat);
ivp.InitialTime = 0;
ivp.InitialValue = vec(U0);
ivp.Parameters = {0.1, Dxx, Dyy, vec, unvec};
ivp.Solver = "stiff";
sol = solutionFcn(ivp, 0, 0.2);
U = @(t) unvec(sol(t));
surf(X', Y', U0')
mx = max(abs(vec(U0)));
clim([-mx, mx]),  shading interp
colormap(redsblues)
xlabel('x'),  ylabel('y')  
title('Initial condition')
Image produced in Jupyter

Here is an animation of the solution.

title('Heat equation on a periodic domain')
vid = VideoWriter("figures/2d-heat.mp4","MPEG-4");
vid.Quality = 85;
open(vid);
for t = linspace(0, 0.2, 61)
    cla, surf(X', Y', U(t)')
    zlim([-3, 3]),  clim([-mx, mx])
    shading interp
    str = sprintf("t = %.2f", t);
    text(-0.9, 0.75, 2, str, fontsize=14);
    writeVideo(vid, frame2im(getframe(gcf)));
end
close(vid)
Example 13.2.3

The first step is to define a discretization of the domain and the initial state.

m = 50;  n = 40;
[x, Dx, Dxx] = diffcheb(m, [-1, 1]);
[y, Dy, Dyy] = diffcheb(n, [-1, 1]);
[mtx, X, Y] = tensorgrid(x, y);
u_init = @(x, y) (1+y) .* (1-x).^4 .* (1+x).^2 .* (1-y.^4);

There are really two grids now: the full grid and the subset grid of interior points. Since the IVP unknowns are on the interior grid, that is the one we need to change shapes on. We also need the functions extend and chop to add and remove boundary values.

[~, ~, ~, vec, unvec] = tensorgrid(x(2:m), y(2:n));
chop = @(U) U(2:m, 2:n);
z = zeros(1, n-1);
extend = @(U) [ zeros(m+1, 1) [z; U; z] zeros(m+1, 1)];
pack = @(U) vec(chop(U));
unpack = @(u) extend(unvec(u));

Now we can define and solve the IVP using a stiff solver.

f13_2_advdiff.m
function du_dt = timederiv(t, u, p)
    [ep, Dx, Dxx, Dy, Dyy, pack, unpack] = p{:};
    U = unpack(u);
    Uxx = Dxx * U;  Uyy = U * Dyy'; 
    dU_dt = 1 - Dx * U + ep * (Uxx + Uyy);  % PDE
    du_dt = pack(dU_dt);
end
ivp = ode(ODEFcn=@f13_2_advdiff);
ivp.InitialTime = 0;
ivp.InitialValue = pack(mtx(u_init));
ivp.Parameters = {0.05, Dx, Dxx, Dy, Dyy, pack, unpack};
ivp.Solver = "stiff";
sol = solutionFcn(ivp, 0, 2);

When we evaluate the solution at a particular value of tt, we get a vector of the interior grid values. The same unpack function above converts this to a complete matrix of grid values.

U = @(t) unpack(sol(t));

clf,  pcolor(X', Y', U(0.5)')
clim([0, 2]), shading interp
axis equal,  colormap(sky), colorbar
title('Advection-diffusion at t = 0.5')  
xlabel('x'),  ylabel('y')
Image produced in Jupyter
hold on
vid = VideoWriter("figures/2d-advdiff.mp4","MPEG-4");
vid.Quality = 85;
open(vid);
for t = linspace(0, 2, 81)
    cla, pcolor(X', Y', U(t)')
    shading interp
    str = sprintf("t = %.2f", t);
    text(-1.5, 0.75, str, fontsize=14);
    writeVideo(vid, frame2im(getframe(gcf)));
end
close(vid)
Example 13.2.4

We start with the discretization and initial condition.

m = 40; n = 42;
[x, Dx, Dxx] = diffcheb(m, [-2, 2]);
[y, Dy, Dyy] = diffcheb(n, [-2, 2]);
[mtx, X, Y] = tensorgrid(x, y);

u_init = @(x, y) (x+0.2) .* exp(-12*(x.^2 + y.^2));
U0 = mtx(u_init);
V0 = zeros(size(U0));

Note that because uu is known on the boundary, while vv is unknown over the full grid, there are two different sizes of vec/unvec operations. We also need to define functions to pack grid unknowns into a vector and to unpack them. When the unknowns for uu are packed, the boundary values are chopped off, and these are restored when unpacking.

[~, ~, ~, vec_v, unvec_v] = tensorgrid(x, y);
[~, ~, ~, vec_u, unvec_u] = tensorgrid(x(2:m), y(2:n));

chop = @(U) U(2:m, 2:n);
z = zeros(1, n-1);
extend = @(U) [ zeros(m+1, 1) [z; U; z] zeros(m+1, 1)];
pack = @(U, V) [vec_u(chop(U)); vec_v(V)];
N = (m-1) * (n-1);
unpack = @(u) f13_2_wave_unpack(u, N, unvec_u, unvec_v, extend);
f13_2_wave_unpack.m
function [U, V] = unpack(w, N, unvec_u, unvec_v, extend)
    U = extend( unvec_u(w(1:N)) );
    V = unvec_v(w(N+1:end));
end

We can now define and solve the IVP. Since this problem is hyperbolic, not parabolic, a nonstiff integrator is faster than a stiff one.

f13_2_wave.m
function dw_dt = timederiv(t, w, p)
    [Dxx, Dyy, pack, unpack] = p{:};
    [U, V] = unpack(w);
    dU_dt = V;
    dV_dt = Dxx * U + U * Dyy';
    dw_dt = pack(dU_dt, dV_dt);
end
ivp = ode(ODEFcn=@f13_2_wave);
ivp.InitialTime = 0;
ivp.InitialValue = pack(U0, V0);
ivp.Parameters = {Dxx, Dyy, pack, unpack};
ivp.Solver = "nonstiff";
sol = solutionFcn(ivp, 0, 4);
clf
[U, V] = unpack(sol(0.5));
pcolor(X', Y', U')
axis equal,  clim([-0.1, 0.1])
colormap(redsblues),  shading interp
xlabel("x"),  ylabel("y")
title("Wave equation at t = 0.5")
Image produced in Jupyter
hold on
vid = VideoWriter("figures/2d-wave.mp4","MPEG-4");
vid.Quality = 85;
open(vid);
for t = linspace(0, 4, 121)
    [U, V] = unpack(sol(t));
    cla, pcolor(X, Y, U)
    shading interp
    str = sprintf("t = %.2f", t);
    text(-3, 1.75, str, fontsize=14);
    writeVideo(vid, frame2im(getframe(gcf)));
end
close(vid)

13.3 Laplace and Poisson equations

Example 13.3.1
A = [1, 2; -2, 0];
B = [1, 10, 100; -5, 5, 3];
disp("A:")
disp(A)
disp("B:")
disp(B)
A:

     1     2
    -2     0

B:

     1    10   100
    -5     5     3

Applying the definition manually, we get

A_kron_B = [
    A(1,1)*B  A(1,2)*B;
    A(2,1)*B  A(2,2)*B
    ]
Loading...

But it makes more sense to use kron.

kron(A, B)
Loading...
Example 13.3.2

We make a crude discretization for illustrative purposes.

m = 6;  n = 5;
[x, Dx, Dxx] = diffmat2(m, [0, 3]);
[y, Dy, Dyy] = diffmat2(n, [-1, 1]);
[mtx, X, Y, vec, unvec, is_boundary] = tensorgrid(x, y);

Next, we define ϕ and evaluate it on the grid to get the forcing vector of the linear system.

phi = @(x, y) x.^2 - y + 2;
b = vec(mtx(phi));

Here are the coefficients for the PDE collocation, before any modifications are made for the boundary conditions. The combination of Kronecker products and finite differences produces a characteristic sparsity pattern.

A = kron(speye(n+1), sparse(Dxx)) + kron(sparse(Dyy), speye(m+1));
clf,  spy(A)
title("System matrix before boundary conditions")
Image produced in Jupyter

The number of equations is equal to (m+1)(n+1)(m+1)(n+1), which is the total number of points on the grid.

N = length(b)
Loading...

We now use the Boolean array that indicates where the boundary points lie in the grid.

spy(is_boundary)
title("Boundary points")
Image produced in Jupyter

In order to impose Dirichlet boundary conditions, we replace the boundary rows of the system by rows of the identity.

I = speye(N);
idx = vec(is_boundary);
A(idx, :) = I(idx, :);

spy(A)
title("System matrix with boundary conditions")
Image produced in Jupyter

Finally, we must replace the rows in the vector b\mathbf{b} by the boundary values being assigned to the boundary points. Here, we let the boundary values be zero everywhere.

b(idx) = 0;

Now we can solve for u\mathbf{u} and reinterpret it as the matrix-shaped U\mathbf{U}, the solution on our grid.

u = A \ b;
U = unvec(u)
Loading...
Example 13.3.3

First we define the problem on [0,1]×[0,2][0,1]\times[0,2].

f = @(x, y) -sin(3*x .* y - 4*y) .* (9*y.^2 + (3*x - 4).^2);
g = @(x, y) sin(3*x .* y - 4*y);
xspan = [0, 1];
yspan = [0, 2];

Here is the finite-difference solution.

[X, Y, U] = poissonfd(f, g, 40, xspan, 60, yspan);

clf, surf(X', Y', U')
colormap(parula),  shading interp
colorbar
title("Solution of Poisson's equation")
xlabel("x"),  ylabel("y"),  zlabel("u(x,y)")
Image produced in Jupyter

Since this is an artificial problem with a known solution, we can plot the error, which is a smooth function of xx and yy. It must be zero on the boundary; otherwise, we have implemented boundary conditions incorrectly.

err = g(X, Y) - U;
mx = max(abs(vec(err)));
pcolor(X', Y', err')
colormap(redsblues),  shading interp
clim([-mx, mx]),  colorbar
axis equal,  xlabel("x"),  ylabel("y")
title("Error")
Image produced in Jupyter

13.4 Nonlinear elliptic PDEs

Example 13.4.2

All we need to define are ϕ from (13.4.2) for the PDE, and a trivial zero function for the boundary condition.

lambda = 1.5;
phi = @(X, Y, U, Ux, Uxx, Uy, Uyy) Uxx + Uyy - lambda ./ (U + 1).^2;
g = @(x, y) zeros(size(x));

Here is the solution for m=15m=15, n=8n=8.

u = elliptic(phi, g, 15, [0, 2.5], 8, [0, 1]);
disp(sprintf("solution at (2, 0.6) is %.7f", u(2, 0.6)))
solution at (2, 0.6) is -0.2264594

x = linspace(0, 2.5, 91);
y = linspace(0, 1, 51);
[mtx, X, Y] = tensorgrid(x, y);
clf,  pcolor(x, y, mtx(u)')
colormap(flipud(sky)),  shading interp,  colorbar
axis equal
xlabel("x"),  ylabel("y")
title("Deflection of a MEMS membrane")
Image produced in Jupyter

In the absence of an exact solution, how can we be confident that the solution is accurate? First, the Levenberg iteration converged without issuing a warning, so we should feel confident that the discrete equations were solved. Assuming that we encoded the PDE correctly, the remaining source of error is truncation from the discretization. We can estimate that by refining the grid a bit and seeing how much the numerical solution changes.

x_test = linspace(0, 2.5, 6);
y_test = linspace(0, 1 , 5);
mtx_test = tensorgrid(x_test, y_test);
format long
mtx_test(u)
Loading...
u = elliptic(phi, g, 25, [0, 2.5], 14, [0, 1]);
mtx_test(u)
Loading...

The original solution seems to be accurate to about four digits.

Example 13.4.3
phi = @(X, Y, U, Ux, Uxx, Uy, Uyy) 1 - Ux - 2*Uy + 0.05*(Uxx + Uyy);
g = @(x, y) zeros(size(x));
u = elliptic(phi, g, 32, [-1, 1], 32, [-1, 1]);
x = linspace(-1, 1, 80);
y = x;
mtx = tensorgrid(x, y);
clf,  pcolor(x, y, mtx(u)')
colormap(parula),  shading interp,  colorbar
axis equal,  xlabel("x"),  ylabel("y")
title("Steady advection–diffusion")
Image produced in Jupyter
Example 13.4.4

The following defines the PDE and a nontrivial Dirichlet boundary condition for the square [0,1]2[0,1]^2.

phi = @(X, Y, U, Ux, Uxx, Uy, Uyy) U .* (1-U.^2) + 0.05*(Uxx + Uyy);
g = @(x, y) tanh(5*(x + 2*y - 1));

We solve the PDE and then plot the result.

u = elliptic(phi, g, 36, [0, 1], 36, [0, 1]);
x = linspace(0, 1, 80);
y = x;
mtx = tensorgrid(x, y);
clf,  pcolor(x, y, mtx(u)')
colormap(parula),  shading interp,  colorbar
axis equal,  xlabel("x"),  ylabel("y")
title("Steady Allen–Cahn")
Image produced in Jupyter