Functions¶
Create a tensor-product grid
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
function [mtx, X, Y, vec, unvec, is_boundary] = tensorgrid(x, y) % TENSORGRID Tensor-product grid. % Input: % x, y 1d projections of the grid nodes (lengths m and n) % Output: % mtx evaluate a function on the grid (function) % X, Y mtx applied to the coordinate functions (m×n) % vec convert grid shape to vector shape (function) % unvec convert vector shape to grid shape (function) % is_boundary indicator of boundary nodes (logical m×n) m = length(x) - 1; n = length(y) - 1; vec = @(U) U(:); unvec = @(u) reshape(u, m+1, n+1); [X, Y] = ndgrid(x, y); function F = grideval(f) F = zeros(size(X)); for k = 1:numel(X) F(k) = f(X(k), Y(k)); end end mtx = @grideval; % Identify boundary points. is_boundary = true(m+1, n+1); is_boundary(2:m, 2:n) = false; end
Solution of Poisson’s equation by finite differences
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34
function [X, Y, U] = poissonfd(f,g,m,xspan,n,yspan) %POISSONFD Solve Poisson's equation by finite differences. % Input: % f forcing function (function of x,y) % g boundary condition (function of x,y) % m number of grid points in x (integer) % xspan endpoints of the domain of x (2-vector) % n number of grid points in y (integer) % yspan endpoints of the domain of y (2-vector) % % Output: % U solution (m+1 by n+1) % X,Y grid matrices (m+1 by n+1) % Discretize the domain. [x, Dx, Dxx] = diffmat2(m, xspan); [y, Dy, Dyy] = diffmat2(n, yspan); [mtx, X, Y, vec, unvec, is_boundary] = tensorgrid(x, y); % Form the collocated PDE as a linear system. Ix = speye(m+1); Iy = speye(n+1); A = kron(Iy, sparse(Dxx)) + kron(sparse(Dyy), Ix); % Laplacian matrix b = vec(mtx(f)); % Replace collocation equations on the boundary. scale = max(abs(A(n+2, :))); I = speye(size(A)); idx = vec(is_boundary); A(idx, :) = scale * I(idx, :); % Dirichet assignment b(idx) = scale * g( X(idx),Y(idx) ); % assigned values % Solve the linear sytem and reshape the output. u = A \ b; U = unvec(u);
Solution of elliptic PDE by Chebyshev collocation
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55
function u = elliptic(phi, g, m, xspan, n, yspan) %ELLIPTIC Solve an elliptic PDE in 2d. % Input: % phi defines phi)(x,y,u,u_x,u_xx,u_y,u_yy) = 0 (function) % g boundary condition (function) % m, xspan size and interval of x discretization (integer, 2-vector) % n, yspan size and interval of y discretization (integer, 2-vector) % Output: % U solution (n+1 by n+1) % X,Y coordinate matrices (n+1 by n+1) % Discretize the domain. [x, Dx, Dxx] = diffcheb(m, xspan); [y, Dy, Dyy] = diffcheb(n, yspan); [mtx, X, Y, vec, unvec, is_boundary] = tensorgrid(x, y); % Identify boundary locations and evaluate the boundary condition. idx = vec(is_boundary); gb = g(X(idx), Y(idx)); % Evaluate the PDE+BC residual. function r = residual(u) U = unvec(u); R = phi(X, Y, U, Dx * U, Dxx * U, U * Dy', U * Dyy'); % PDE R(idx) = u(idx) - gb; % boundary r = vec(R); end % Solve the equation. u = levenberg(@residual, vec(zeros(size(X)))); U = unvec(u(:, end)); function u = evaluate(xi, eta) v = zeros(1, n+1); for j = 1:n+1 v(j) = chebinterp(x, U(:, j), xi); end u = chebinterp(y, v, eta); end u = @evaluate; end function f = chebinterp(x, v, xi) n = length(x) - 1; w = (-1.0) .^ (0:n)'; w([1, n+1]) = w([1, n+1]) / 2; terms = w ./ (xi - x(:)); if any(isinf(terms)) % exactly at a node f = v(xi == x); else f = sum(v(:) .* terms) / sum(terms); end end
Examples¶
13.1 Tensor-product discretizations¶
Example 13.1.2
Here is the grid from Example 13.1.1.
m = 4;
x = linspace(0, 2, m+1);
n = 2;
y = linspace(1, 3, n+1);
For a given we can find by using a comprehension syntax.
[mtx, X, Y] = tensorgrid(x, y);
f = @(x, y) cos(pi * x .* y - y);
F = mtx(f)
We can make a nice plot of the function by first choosing a much finer grid. However, the contour and surface plotting functions expect the transpose of mtx().
Tip
To emphasize departures from a zero level, use a colormap such as redsblues
and set the color limits to be symmetric around zero.
m = 80; x = linspace(0, 2, m+1);
n = 60; y = linspace(1, 3, n+1);
[mtx, X, Y] = tensorgrid(x, y);
F = mtx(f);
pcolor(X', Y', F')
shading interp
colormap(redsblues), colorbar
axis equal
xlabel("x"), ylabel("y")
Example 13.1.3
For a function given in polar form, such as , construction of a function over the unit disk is straightforward using a grid in space.
r = linspace(0, 1, 41);
theta = linspace(0, 2*pi, 121);
[mtx, R, Theta] = tensorgrid(r, theta);
F = mtx(@(r, theta) 1 - r.^4);
clf, colormap(parula)
contourf(R', Theta', F', 20)
shading flat
xlabel("r"), ylabel("\theta"),
title("A polar function")
Of course, we are used to seeing such plots over the plane, not the plane. For this we create matrices for the coordinate functions and .
X = R .* cos(Theta); Y = R .* sin(Theta);
contourf(X', Y', F', 20)
axis equal, shading interp
xlabel('x'), ylabel('y')
title('Function over the unit disk')
In such functions the values along the line must be identical, and the values on the line should be identical to those on . Otherwise the interpretation of the domain as the unit disk is nonsensical. If the function is defined in terms of and , then those can be defined in terms of and θ using (13.1.6).
Example 13.1.4
We define a function and, for reference, its two exact partial derivatives.
u = @(x, y) sin(pi * x .* y - y);
du_dx = @(x, y) pi * y .* cos(pi * x .* y - y);
du_dy = @(x, y) (pi * x - 1) .* cos(pi * x .* y - y);
We will use an equispaced grid and second-order finite differences as implemented by diffmat2
. First, we have a look at a plots of the exact partial derivatives.
m = 80; [x, Dx] = diffmat2(m, [0, 2]);
n = 60; [y, Dy] = diffmat2(n, [1, 4]);
[mtx, X, Y] = tensorgrid(x, y);
U = mtx(u);
dU_dX = mtx(du_dx);
dU_dY = mtx(du_dy);
clf, subplot(1, 2, 1)
pcolor(X', Y', dU_dX')
axis equal, shading interp
title('∂u/∂x')
subplot(1, 2, 2)
pcolor(X', Y', dU_dY')
axis equal, shading interp
title('∂u/∂y')
Now we compare the exact partial derivatives with their finite-difference approximations. Since these are signed errors, we use a colormap that is symmetric around zero.
err = dU_dX - Dx * U;
subplot(1, 2, 1)
pcolor(X', Y', err')
colorbar, clim([-.4, .4])
axis equal, shading interp
title('error in ∂u/∂x')
err = dU_dY - U * Dy';
subplot(1,2,2)
pcolor(X', Y', err')
colorbar, clim([-.1, .1])
axis equal, shading interp
colormap(redsblues)
title('error in ∂u/∂y')
Not surprisingly, the errors are largest where the derivatives themselves are largest.
13.2 Two-dimensional diffusion and advection¶
Example 13.2.1
m = 4; n = 3;
x = linspace(0, 2, m+1);
y = linspace(-3, 0, n+1);
f = @(x, y) cos(0.75*pi * x .* y - 0.5*pi * y);
[mtx, X, Y, vec, unvec] = tensorgrid(x, y);
F = mtx(f);
disp("function on a 4x3 grid:")
disp(F)
function on a 4x3 grid:
-0.0000 -1.0000 0.0000 1.0000
0.3827 0.7071 0.9239 1.0000
-0.7071 0.0000 0.7071 1.0000
0.9239 -0.7071 -0.3827 1.0000
-1.0000 1.0000 -1.0000 1.0000
disp("vec(F):")
disp(vec(F))
vec(F):
-0.0000
0.3827
-0.7071
0.9239
-1.0000
-1.0000
0.7071
0.0000
-0.7071
1.0000
0.0000
0.9239
0.7071
-0.3827
-1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
The unvec
operation is the inverse of vec.
disp("unvec(vec(F)):")
disp(unvec(vec(F)))
unvec(vec(F)):
-0.0000 -1.0000 0.0000 1.0000
0.3827 0.7071 0.9239 1.0000
-0.7071 0.0000 0.7071 1.0000
0.9239 -0.7071 -0.3827 1.0000
-1.0000 1.0000 -1.0000 1.0000
Example 13.2.2
m = 60; n = 40;
[x, Dx, Dxx] = diffper(m, [-1, 1]);
[y, Dy, Dyy] = diffper(n, [-1, 1]);
[mtx, X, Y, vec, unvec] = tensorgrid(x, y);
Note that the initial condition should also be periodic on the domain.
U0 = sin(4*pi*X) .* exp( cos(pi*Y) );
clf, surf(X', Y', U0')
mx = max(abs(vec(U0)));
clim([-mx, mx]), shading interp
colormap(redsblues)
xlabel('x'), ylabel('y')
title('Initial condition')
This function computes the time derivative for the unknowns. The actual calculations take place using the matrix shape.
function du_dt = timederiv(t, u, p)
[alpha, Dxx, Dyy, vec, unvec] = p{:};
U = unvec(u);
Uxx = Dxx * U; Uyy = U * Dyy'; % 2nd partials
dU_dt = alpha * (Uxx + Uyy); % PDE
du_dt = vec(dU_dt);
end
Since this problem is parabolic, a stiff integrator is appropriate.
ivp = ode(ODEFcn=@f13_2_heat);
ivp.InitialTime = 0;
ivp.InitialValue = vec(U0);
ivp.Parameters = {0.1, Dxx, Dyy, vec, unvec};
ivp.Solver = "stiff";
sol = solutionFcn(ivp, 0, 0.2);
U = @(t) unvec(sol(t));
surf(X', Y', U0')
mx = max(abs(vec(U0)));
clim([-mx, mx]), shading interp
colormap(redsblues)
xlabel('x'), ylabel('y')
title('Initial condition')
Here is an animation of the solution.
Tip
Here clims
are set so that colors remain at fixed values throughout the animation.
title('Heat equation on a periodic domain')
vid = VideoWriter("figures/2d-heat.mp4","MPEG-4");
vid.Quality = 85;
open(vid);
for t = linspace(0, 0.2, 61)
cla, surf(X', Y', U(t)')
zlim([-3, 3]), clim([-mx, mx])
shading interp
str = sprintf("t = %.2f", t);
text(-0.9, 0.75, 2, str, fontsize=14);
writeVideo(vid, frame2im(getframe(gcf)));
end
close(vid)
Example 13.2.3
The first step is to define a discretization of the domain and the initial state.
m = 50; n = 40;
[x, Dx, Dxx] = diffcheb(m, [-1, 1]);
[y, Dy, Dyy] = diffcheb(n, [-1, 1]);
[mtx, X, Y] = tensorgrid(x, y);
u_init = @(x, y) (1+y) .* (1-x).^4 .* (1+x).^2 .* (1-y.^4);
There are really two grids now: the full grid and the subset grid of interior points. Since the IVP unknowns are on the interior grid, that is the one we need to change shapes on. We also need the functions extend
and chop
to add and remove boundary values.
[~, ~, ~, vec, unvec] = tensorgrid(x(2:m), y(2:n));
chop = @(U) U(2:m, 2:n);
z = zeros(1, n-1);
extend = @(U) [ zeros(m+1, 1) [z; U; z] zeros(m+1, 1)];
pack = @(U) vec(chop(U));
unpack = @(u) extend(unvec(u));
Now we can define and solve the IVP using a stiff solver.
function du_dt = timederiv(t, u, p)
[ep, Dx, Dxx, Dy, Dyy, pack, unpack] = p{:};
U = unpack(u);
Uxx = Dxx * U; Uyy = U * Dyy';
dU_dt = 1 - Dx * U + ep * (Uxx + Uyy); % PDE
du_dt = pack(dU_dt);
end
ivp = ode(ODEFcn=@f13_2_advdiff);
ivp.InitialTime = 0;
ivp.InitialValue = pack(mtx(u_init));
ivp.Parameters = {0.05, Dx, Dxx, Dy, Dyy, pack, unpack};
ivp.Solver = "stiff";
sol = solutionFcn(ivp, 0, 2);
When we evaluate the solution at a particular value of , we get a vector of the interior grid values. The same unpack
function above converts this to a complete matrix of grid values.
U = @(t) unpack(sol(t));
clf, pcolor(X', Y', U(0.5)')
clim([0, 2]), shading interp
axis equal, colormap(sky), colorbar
title('Advection-diffusion at t = 0.5')
xlabel('x'), ylabel('y')
hold on
vid = VideoWriter("figures/2d-advdiff.mp4","MPEG-4");
vid.Quality = 85;
open(vid);
for t = linspace(0, 2, 81)
cla, pcolor(X', Y', U(t)')
shading interp
str = sprintf("t = %.2f", t);
text(-1.5, 0.75, str, fontsize=14);
writeVideo(vid, frame2im(getframe(gcf)));
end
close(vid)
Example 13.2.4
We start with the discretization and initial condition.
m = 40; n = 42;
[x, Dx, Dxx] = diffcheb(m, [-2, 2]);
[y, Dy, Dyy] = diffcheb(n, [-2, 2]);
[mtx, X, Y] = tensorgrid(x, y);
u_init = @(x, y) (x+0.2) .* exp(-12*(x.^2 + y.^2));
U0 = mtx(u_init);
V0 = zeros(size(U0));
Note that because is known on the boundary, while is unknown over the full grid, there are two different sizes of vec/unvec operations. We also need to define functions to pack grid unknowns into a vector and to unpack them. When the unknowns for are packed, the boundary values are chopped off, and these are restored when unpacking.
[~, ~, ~, vec_v, unvec_v] = tensorgrid(x, y);
[~, ~, ~, vec_u, unvec_u] = tensorgrid(x(2:m), y(2:n));
chop = @(U) U(2:m, 2:n);
z = zeros(1, n-1);
extend = @(U) [ zeros(m+1, 1) [z; U; z] zeros(m+1, 1)];
pack = @(U, V) [vec_u(chop(U)); vec_v(V)];
N = (m-1) * (n-1);
unpack = @(u) f13_2_wave_unpack(u, N, unvec_u, unvec_v, extend);
function [U, V] = unpack(w, N, unvec_u, unvec_v, extend)
U = extend( unvec_u(w(1:N)) );
V = unvec_v(w(N+1:end));
end
We can now define and solve the IVP. Since this problem is hyperbolic, not parabolic, a nonstiff integrator is faster than a stiff one.
function dw_dt = timederiv(t, w, p)
[Dxx, Dyy, pack, unpack] = p{:};
[U, V] = unpack(w);
dU_dt = V;
dV_dt = Dxx * U + U * Dyy';
dw_dt = pack(dU_dt, dV_dt);
end
ivp = ode(ODEFcn=@f13_2_wave);
ivp.InitialTime = 0;
ivp.InitialValue = pack(U0, V0);
ivp.Parameters = {Dxx, Dyy, pack, unpack};
ivp.Solver = "nonstiff";
sol = solutionFcn(ivp, 0, 4);
clf
[U, V] = unpack(sol(0.5));
pcolor(X', Y', U')
axis equal, clim([-0.1, 0.1])
colormap(redsblues), shading interp
xlabel("x"), ylabel("y")
title("Wave equation at t = 0.5")
hold on
vid = VideoWriter("figures/2d-wave.mp4","MPEG-4");
vid.Quality = 85;
open(vid);
for t = linspace(0, 4, 121)
[U, V] = unpack(sol(t));
cla, pcolor(X, Y, U)
shading interp
str = sprintf("t = %.2f", t);
text(-3, 1.75, str, fontsize=14);
writeVideo(vid, frame2im(getframe(gcf)));
end
close(vid)
13.3 Laplace and Poisson equations¶
Example 13.3.1
A = [1, 2; -2, 0];
B = [1, 10, 100; -5, 5, 3];
disp("A:")
disp(A)
disp("B:")
disp(B)
A:
1 2
-2 0
B:
1 10 100
-5 5 3
Applying the definition manually, we get
A_kron_B = [
A(1,1)*B A(1,2)*B;
A(2,1)*B A(2,2)*B
]
But it makes more sense to use kron
.
kron(A, B)
Example 13.3.2
We make a crude discretization for illustrative purposes.
m = 6; n = 5;
[x, Dx, Dxx] = diffmat2(m, [0, 3]);
[y, Dy, Dyy] = diffmat2(n, [-1, 1]);
[mtx, X, Y, vec, unvec, is_boundary] = tensorgrid(x, y);
Next, we define ϕ and evaluate it on the grid to get the forcing vector of the linear system.
phi = @(x, y) x.^2 - y + 2;
b = vec(mtx(phi));
Here are the coefficients for the PDE collocation, before any modifications are made for the boundary conditions. The combination of Kronecker products and finite differences produces a characteristic sparsity pattern.
A = kron(speye(n+1), sparse(Dxx)) + kron(sparse(Dyy), speye(m+1));
clf, spy(A)
title("System matrix before boundary conditions")
The number of equations is equal to , which is the total number of points on the grid.
N = length(b)
We now use the Boolean array that indicates where the boundary points lie in the grid.
spy(is_boundary)
title("Boundary points")
In order to impose Dirichlet boundary conditions, we replace the boundary rows of the system by rows of the identity.
Tip
Changing rows of a sparse array requires that the operands be in a particular sparse representation called lil
. The conversion isn’t done automatically because it can be slow and you are encouraged to avoid it when possible. We’re just trying to keep things conceptually simple here.
I = speye(N);
idx = vec(is_boundary);
A(idx, :) = I(idx, :);
spy(A)
title("System matrix with boundary conditions")
Finally, we must replace the rows in the vector by the boundary values being assigned to the boundary points. Here, we let the boundary values be zero everywhere.
b(idx) = 0;
Now we can solve for and reinterpret it as the matrix-shaped , the solution on our grid.
u = A \ b;
U = unvec(u)
Example 13.3.3
First we define the problem on .
f = @(x, y) -sin(3*x .* y - 4*y) .* (9*y.^2 + (3*x - 4).^2);
g = @(x, y) sin(3*x .* y - 4*y);
xspan = [0, 1];
yspan = [0, 2];
Here is the finite-difference solution.
[X, Y, U] = poissonfd(f, g, 40, xspan, 60, yspan);
clf, surf(X', Y', U')
colormap(parula), shading interp
colorbar
title("Solution of Poisson's equation")
xlabel("x"), ylabel("y"), zlabel("u(x,y)")
Since this is an artificial problem with a known solution, we can plot the error, which is a smooth function of and . It must be zero on the boundary; otherwise, we have implemented boundary conditions incorrectly.
err = g(X, Y) - U;
mx = max(abs(vec(err)));
pcolor(X', Y', err')
colormap(redsblues), shading interp
clim([-mx, mx]), colorbar
axis equal, xlabel("x"), ylabel("y")
title("Error")
13.4 Nonlinear elliptic PDEs¶
Example 13.4.2
All we need to define are ϕ from (13.4.2) for the PDE, and a trivial zero function for the boundary condition.
lambda = 1.5;
phi = @(X, Y, U, Ux, Uxx, Uy, Uyy) Uxx + Uyy - lambda ./ (U + 1).^2;
g = @(x, y) zeros(size(x));
Here is the solution for , .
u = elliptic(phi, g, 15, [0, 2.5], 8, [0, 1]);
disp(sprintf("solution at (2, 0.6) is %.7f", u(2, 0.6)))
solution at (2, 0.6) is -0.2264594
x = linspace(0, 2.5, 91);
y = linspace(0, 1, 51);
[mtx, X, Y] = tensorgrid(x, y);
clf, pcolor(x, y, mtx(u)')
colormap(flipud(sky)), shading interp, colorbar
axis equal
xlabel("x"), ylabel("y")
title("Deflection of a MEMS membrane")
In the absence of an exact solution, how can we be confident that the solution is accurate? First, the Levenberg iteration converged without issuing a warning, so we should feel confident that the discrete equations were solved. Assuming that we encoded the PDE correctly, the remaining source of error is truncation from the discretization. We can estimate that by refining the grid a bit and seeing how much the numerical solution changes.
x_test = linspace(0, 2.5, 6);
y_test = linspace(0, 1 , 5);
mtx_test = tensorgrid(x_test, y_test);
format long
mtx_test(u)
u = elliptic(phi, g, 25, [0, 2.5], 14, [0, 1]);
mtx_test(u)
The original solution seems to be accurate to about four digits.
Example 13.4.3
phi = @(X, Y, U, Ux, Uxx, Uy, Uyy) 1 - Ux - 2*Uy + 0.05*(Uxx + Uyy);
g = @(x, y) zeros(size(x));
u = elliptic(phi, g, 32, [-1, 1], 32, [-1, 1]);
x = linspace(-1, 1, 80);
y = x;
mtx = tensorgrid(x, y);
clf, pcolor(x, y, mtx(u)')
colormap(parula), shading interp, colorbar
axis equal, xlabel("x"), ylabel("y")
title("Steady advection–diffusion")
Example 13.4.4
The following defines the PDE and a nontrivial Dirichlet boundary condition for the square .
phi = @(X, Y, U, Ux, Uxx, Uy, Uyy) U .* (1-U.^2) + 0.05*(Uxx + Uyy);
g = @(x, y) tanh(5*(x + 2*y - 1));
We solve the PDE and then plot the result.
u = elliptic(phi, g, 36, [0, 1], 36, [0, 1]);
x = linspace(0, 1, 80);
y = x;
mtx = tensorgrid(x, y);
clf, pcolor(x, y, mtx(u)')
colormap(parula), shading interp, colorbar
axis equal, xlabel("x"), ylabel("y")
title("Steady Allen–Cahn")